

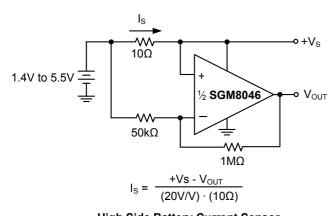
SGM8046 670nA, Non-Unity Gain, Dual Rail-to-Rail Input/Output Operational Amplifier

PRODUCT DESCRIPTION

The SGM8046 operates with a single supply voltage as low as 1.4V, while drawing less than 670nA (TYP) of quiescent current per amplifier. This device is also designed to support rail-to-rail input and output operation. This combination of features supports battery-powered and portable applications.

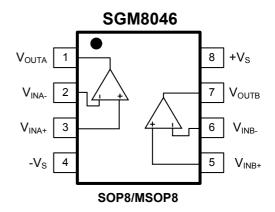
The SGM8046 has a gain-bandwidth product of 100kHz (TYP) and is stable for gains of 10. The combination of characteristics makes the SGM8046 ideal for low frequency applications, such as battery current monitoring and sensor conditioning.

The SGM8046 operational amplifier is offered in dual configuration and it is specified for the extended industrial (-40°C to +85°C) temperature range. The SGM8046 is available in the Green SOP8 and MSOP8 packages.


FEATURES

- Low Quiescent Current: 670nA/Amplifier (TYP)
- Rail-to-Rail Input and Output
- Gain Bandwidth Product: 100kHz (TYP)
- Stable for Gains of 10
- Wide Supply Voltage Range: 1.4V to 5.5V
- -40°C to +85°C Operating Temperature Range
- Available in Green SOP8 and MSOP8 Packages

APPLICATIONS


Toll Booth Tags
Wearable Products
Temperature Measurement
Battery Powered System

TYPICAL APPLICATION

High Side Battery Current Sensor

PIN CONFIGURATIONS (Top View)

SGM8046

PACKAGE/ORDERING INFORMATION

MODEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
SGM8046	SGM8046YS8G/TR	SOP8	Tape and Reel, 2500	SGM8046YS8
	SGM8046YMS8G/TR	MSOP8	Tape and Reel, 3000	SGM8046YMS8

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Differential Input Voltage (-V _S) – (+V _S)
Storage Temperature Range65°C to +150°C
Junction Temperature
Operating Temperature Range40°C to +85°C
Lead Temperature Range (Soldering 10 sec)
260°C
ESD Susceptibility
HBM
MM

NOTE:

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGM8046

ELECTRICAL CHARACTERISTICS

 $+V_S$ = +1.4V to +5.0V, $-V_S$ = GND, T_A = +25°C, A_V = 10, V_{CM} = +V_S / 2, $V_{OUT} \approx +V_S$ / 2 and R_L = 1M Ω to +V_S / 2⁽¹⁾, unless otherwise noted.

PARAMETER		CONDITIONS	MIN	MIN TYP		UNITS	
DC ELECTRICAL CHARAC	TERISTICS		•		•		
Input Offset Voltage (Vos)		$V_{CM} = +V_S/2$		0.4	2.5	mV	
Input Offset Voltage Drift ($\Delta V_{OS}/\Delta_T$)		$V_{CM} = +V_S/2, -40^{\circ}C \le T_A \le +85^{\circ}C$		2.5		μV/°C	
Power Supply Rejection Rat	tio (PSRR)	+V _S = 1.4V to 5.5V 77		84		dB	
Common-Mode Input Range	(V _{CMR})		-Vs - 0.1		+Vs + 0.1	V	
		+V _S = 5.0V, V _{CM} = -0.1V to 5.1V	68	82			
Common-Mode Rejection Ratio (CMRR)		$+V_S = 5.0V$, $V_{CM} = 2.5V$ to 5.1V	71	76		dB	
		$+V_S = 5.0V$, $V_{CM} = -0.1V$ to 2.5V	66	81			
		$+V_S = 1.4V$, $R_L = 50k\Omega$, $V_{OUT} = +V_S - 0.1V$	69	77			
Large Signal Voltage Gain (A _{VO})		$+V_S = 2.5V$, $R_L = 50k\Omega$, $V_{OUT} = +V_S - 0.1V$		86		dB	
		$+V_S = 5.0V$, $R_L = 50k\Omega$, $V_{OUT} = +V_S - 0.1V$	84	92			
Input Bias Current (I _B)				1		pA	
Input Offset Current (I _{OS})				1		pA	
	V _{OH}	$+V_{S} = 1.4V, R_{L} = 50k\Omega$	1.390	1.395		V	
		$+V_S$ = 2.5V, R _L = 50kΩ		2.497			
Maximum Output		$+V_S = 5.0V$, $R_L = 50$ kΩ	4.990	4.997			
Voltage Swing	V _{OL}	$+V_S = 1.4V$, $R_L = 50$ kΩ		4.8	10	mV	
		$+V_S = 2.5V$, $R_L = 50$ kΩ		3.0			
		$+V_S = 5.0V$, $R_L = 50$ kΩ		3.4	10		
Short Circuit Current (I _{SC})		+V _S = 2.5V		4.8		mA	
		+V _S = 5.0V	22	24			
Supply Voltage			1.4		5.5	V	
Quiescent Current / per Amplifier (I _Q)		+V _S = 1.4V		560			
		mplifier (I_Q) +V _S = 2.5V 620			nA		
		+V _S = 5.0V		670	1500	0	

Specifications subject to changes without notice.

ELECTRICAL CHARACTERISTICS

 $+V_S$ = +1.4V to +5.0V, $-V_S$ = GND, T_A = +25°C, A_V = 10, V_{CM} = + V_S / 2, V_{OUT} \approx + V_S / 2 and R_L = 1M Ω to + V_S / 2, C_L = 60pF ⁽¹⁾, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
AC ELECTRICAL CHARACTERISTICS						
Gain-Bandwidth Product			100		kHz	
	+V _S = 1.4V, V _{OUT} = 1V Step		10.5			
Slew Rate (SR)	+V _S = 2.5V, V _{OUT} = 1V Step		12.5		V/ms	
	+V _S = 5.0V, V _{OUT} = 2V Step		14.5		1	
Phase Margin (PM)	+V _S = 1.4V to 5.5V		60		۰	
	+V _S = 1.4V, f = 0.1Hz to 10Hz		3.2			
Input Voltage Noise (en p-p)	+V _S = 2.5V, f = 0.1Hz to 10Hz		3.0		µV _{P-P}	
	+V _S = 5.0V, f = 0.1Hz to 10Hz		3.0			
	+V _S = 1.4V, f = 1kHz		190			
Input Voltage Noise Density (en)	+V _S = 2.5V, f = 1kHz		180		nV/ √HZ	
	+V _S = 5.0V, f = 1kHz		190			

NOTE1: Refer to Figure 1 and Figure 2.

Specifications subject to changes without notice.

TEST CIRCUITS

The test circuits used for the DC and AC tests are shown in Figure 1 and Figure 2. The bypass capacitors are laid out according to the rules discussed in "Supply Bypass".

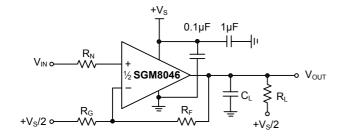
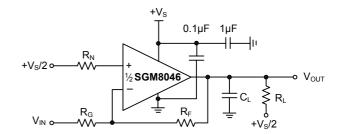


Figure 1. AC and DC Test Circuit for Most Non-Inverting Gain Conditions.



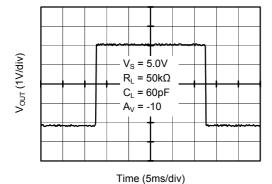
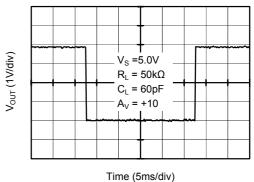
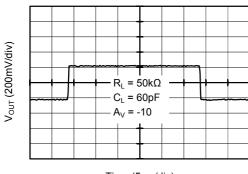
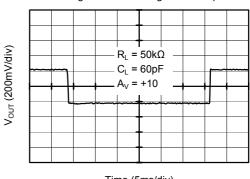


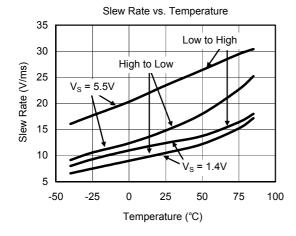
Figure 2. AC and DC Test Circuit for Most Inverting Gain Conditions.

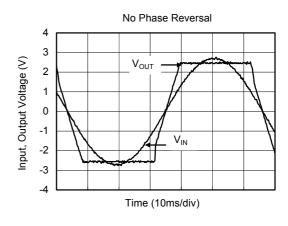

TYPICAL PERFORMANCE CHARACTERISTICS

 T_A = +25°C, +V_S = +1.4V to +5.0V, -V_S = GND, A_V = 10, V_{CM} = +V_S / 2, V_{OUT} ≈ +V_S / 2 and R_L = 1M Ω to +V_S / 2, C_L = 60pF, unless otherwise noted.

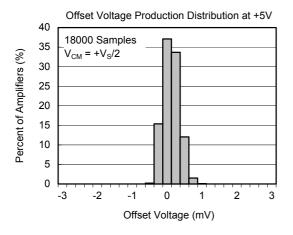


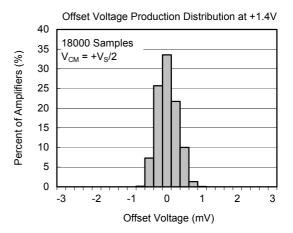

Large Signal Non-Inverting Pulse Response


Small Signal Inverting Pulse Response

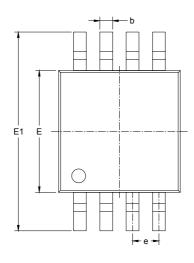

Small Signal Non-Inverting Pulse Response

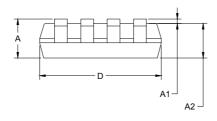
Time (5ms/div)




Time (5ms/div)

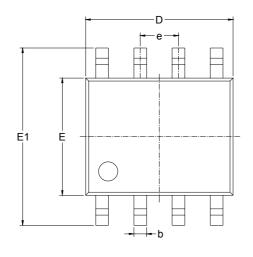
TYPICAL PERFORMANCE CHARACTERISTICS

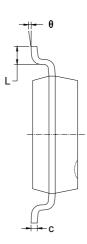

 T_A = +25°C, +V_S = +1.4V to +5.0V, -V_S = GND, A_V = 10, V_{CM} = +V_S / 2, V_{OUT} \approx +V_S / 2 and R_L = 1M Ω to +V_S / 2, C_L = 60pF, unless otherwise noted.

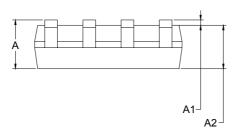


PACKAGE OUTLINE DIMENSIONS

MSOP8






Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
е	0.650 BSC		0.026 BSC		
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

PACKAGE OUTLINE DIMENSIONS

SOP8

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270 BSC		0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

SGMICRO is dedicated to provide high quality and high performance analog IC products to customers. All SGMICRO products meet the highest industry standards with strict and comprehensive test and quality control systems to achieve world-class consistency and reliability.

For more information regarding SGMICRO Corporation and its products, please visit www.sg-micro.com

