

SGM44599 4Ω, High Speed, Low Voltage Dual, DPDT Analog Switch

GENERAL DESCRIPTION

The SGM44599 is a high-speed, low-voltage, advanced dual-independent double-pole/double-throw (DPDT) CMOS analog switch that is designed to operate from a single +1.8V to +5.5V power supply. It features high-bandwidth (300MHz) and low on-resistance (4 Ω TYP).

The SGM44599 is configured as a dual double-pole /double-throw (DPDT) device with two logic control inputs that control two multiplexer/demultiplexer each. The configuration can also be used as a dual differential 2-to-1 multiplexer/ demultiplexer.

SGM44599 is available in TQFN-16 (3mm × 3mm) and TQFN-16 (2.5mm × 2.5mm) packages.

FEATURES

Low Voltage Operation: 1.8V to 5.5V

On-Resistance: 4Ω (TYP)

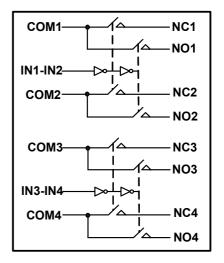
• Low On-Resistance Flatness

-3dB Bandwidth: 300MHz

• Rail-to-Rail Input and Output Operation

• High Off-Isolation: -75dB at 1MHz

Low Crosstalk: -100dB at 1MHz

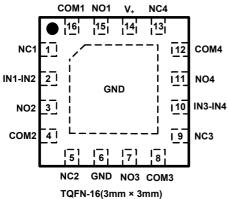

Typical Power Consumption (<0.01µW)

• TTL/CMOS Compatible

 Lead (Pb) Free TQFN-16 (3mm × 3mm) and TQFN-16 (2.5mm × 2.5mm) Packages

Extended Industrial Temperature Range:
 -40°C to +85°C

BLOCK DIAGRAM


APPLICATIONS

Communication Systems
Cell Phones
Portable Instrumentation
Audio Signal Routing
Audio and Video Switching
PCMCIA Cards
Computer Peripherals
Modems
PDAs

ORDERING INFORMATION

MODEL	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
SGM44599	TQFN-16 (2.5mm×2.5mm)	-40°C to +85°C	SGM44599YTQB16/TR	44599	Tape and Reel, 3000
	TQFN-16 (3mm×3mm)	-40°C to +85°C	SGM44599YTQ16/TR	44599	Tape and Reel, 3000

PIN CONFIGURATIONS (TOP VIEW)

TQFN-16(3mm × 3mm) TQFN-16(2.5mm ×2.5mm)

FUNCTION TABLE

IN1-IN2	Function				
IIN 1-IINZ	NC1 and NC2	NO1 and NO2			
0	ON	OFF			
1	OFF	ON			

IN3-IN4	Function				
1113-1114	NC3 and NC4	NO3 and NO4			
0	ON	OFF			
1	OFF	ON			

ABSOLUTE MAXIMUM RATINGS

V+ to GND	0.3V to 6V
Analog, Digital voltage range	0.3V to (V ₊) + 0.3V
Continuous Current NO, NC, or COM	±100mA
Operating Temperature Range	40°C to +85°C
Junction Temperature	150°C
Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 10s)	260°C
ESD Susceptibility	
HBM	2000V
MM	200V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PIN DESCRIPTION

	Р	IN			
NAME	TQFN-16 (3mm×3mm)	TQFN-16 (2.5mm×2.5mm)	FUNCTION		
V_{+}	14		Power supply		
GND	6		Ground		
IN _X	2, 10		Digital control pin to connect the COM terminal to the NO or NC terminals		
COM_X	16, 4, 8, 12		Common terminal		
NO _X	15, 3, 7, 11		Normally-open terminal		
NC _X	1, 5,	9, 13	Normally-closed terminal		

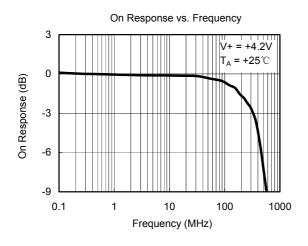
Note: NO_X , NC_X and COM_X terminals may be an input or output.

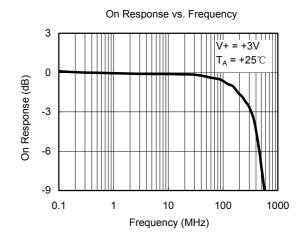
ELECTRICAL CHARACTERISTICS

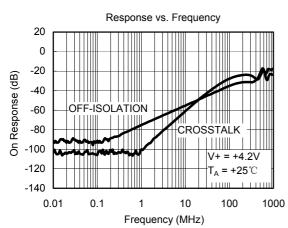
 $(V_+ = +4.5V \text{ to } +5.5V, \text{ GND} = 0V, V_{IH} = +1.6V, V_{IL} = +0.5V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Typical values are at $V_+ = +5.0V, T_A = +25^{\circ}\text{C}$, unless otherwise noted.)

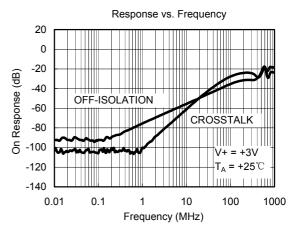
PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH	l							
Analog Signal Range	V_{NO}, V_{NC}, V_{COM}			-40°C to +85°C	0		V ₊	V
On Braintains	R _{ON}	$V_+ = 4.5V$, $0V \le V_{NO}$ or $V_{NC} \le V_+$, $I_{COM} = -100$ mA, Test Circuit 1		+25°C		4	6.2	Ω
On-Resistance				-40°C to +85°C			7.2	Ω
On-Resistance Match		$V_{+} = 4.5V, 0V \le V_{NO} \text{ or } V_{N}$	_C ≤ V+,	+25°C		0.4	2.6	Ω
Between Channels	ΔR_{ON}	I _{COM} = -100mA, Test Circu	it 1	-40°C to +85°C			3.1	Ω
On-Resistance Flatness	5	$V_{+} = 4.5V, 0V \le V_{NO} \text{ or } V_{NC} \le V_{+},$		+25°C		2	3.1	Ω
On-Resistance Flatness	R _{FLAT(ON)}	I _{COM} = -100mA, Test Circu	it 1	-40°C to +85°C			3.6	Ω
Source OFF Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{+} = 5.5V$, V_{NO} or $V_{NC} = 3$. $V_{COM} = 0.3V/3.3V$	3V/ 0.3V,	-40°C to +85°C			1	μΑ
Channel ON Leakage Current	I _{NC(ON)} , I _{NO(ON)} , I _{COM(ON)}		$V_{+} = 5.5V$, $V_{COM} = 0.3V/3.3V$, V_{NO} or $V_{NC} = 0.3V/3.3V$, or floating				1	μΑ
DIGITAL INPUTS	l							
Input High Voltage	V _{INH}			-40°C to +85°C	1.6			V
Input Low Voltage	V _{INL}			-40°C to +85°C			0.5	V
Input Leakage Current	I _{IN}	V ₊ = 5.5V, V _{IN} = 0V or 5.5V		-40°C to +85°C			1	μΑ
DYNAMIC CHARACTERISTICS	3							
Turn-On Time	t _{ON}	V_{NC} or V_{NO} = 3.0V, R_L = 300 Ω , C_L = 35pF, Test Circuit2		+25°C		31.5		ns
Turn-Off Time	toff			+25°C		30.0		ns
Break-Before-Make Time Delay	t _D	V_{NC} or V_{NO} = 3.0V, R_L = 300 Ω , C_L = 35pF, Test Circuit4		+25°C		11.5		ns
Charge Injection	Q		V_G = GND, R_G = 0 Ω , C_L = 1.0nF, Q = C_L x V_{OUT} , Test Circuit3			3.5		pC
Off Isolation	O _{ISO}	Olginal - Odbin, INL - 3032,	1MHz	+25°C		-75		dB
On isolation			10MHz	+25°C		-55		uБ
Channel-to-Channel Crosstalk	V	Signal = $0dBm,R_L = 50\Omega$,	1MHz	+25°C		-100		dB
Chamer-to-Chamer Crosstark	X _{TALK}	Test Circuit6	10MHz	+25°C		-60		uБ
-3dB Bandwidth	BW	Signal = 0dBm, R_L = 50Ω , Test Circuit7		+25°C		300		MHz
Channel ON Capacitance	$\begin{matrix} C_{\text{NC(ON)}}, \ C_{\text{NO(ON)}}, \\ C_{\text{COM(ON)}} \end{matrix}$			+25°C		43.2		pF
POWER REQUIREMENTS								
Power Supply Range	V ₊	_		-40°C to +85°C	1.8		5.5	V
Power Supply Current	I ₊	$V_{+} = 5.5V$, $V_{IN} = 0V$ or V_{+}		-40°C to +85°C			1	μΑ

Specifications subject to changes without notice.

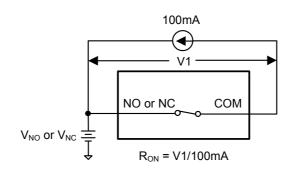

ELECTRICAL CHARACTERISTICS

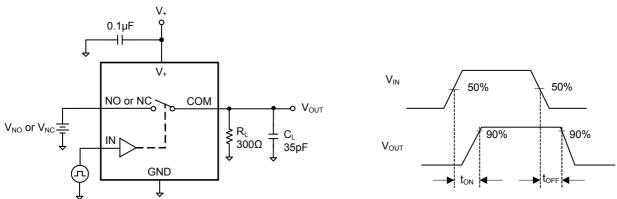

 $(V_+ = +2.7V \text{ to } +3.6V, V_{IH} = +1.6V, V_{IL} = +0.4V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Typical values are at $V_+ = +3.0V, T_A = +25^{\circ}\text{C}$, unless otherwise noted.)

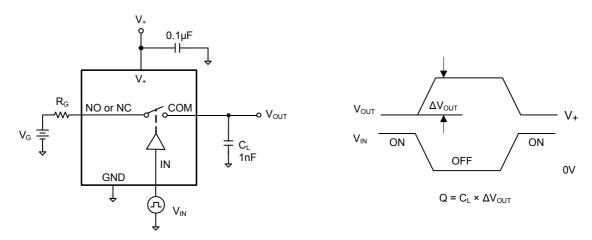

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH	I.							
Analog Signal Range	V_{NO}, V_{NC}, V_{COM}			-40°C to +85°C	0		V ₊	٧
On-Resistance	В	$V_{+} = 2.7V, 0V \le V_{NO} \text{ or } V_{NC} \le V_{+},$		+25°C		10	15	Ω
On-Resistance	R _{ON}	I _{COM} = -100mA, Test Circui	I _{COM} = -100mA, Test Circuit 1				18	Ω
On-Resistance Match	ΔR_ON	$V_{+} = 2.7V, 0V \le V_{NO} \text{ or } V_{NC}$		+25°C		1	3	Ω
Between Channels	ΔKON	I _{COM} = -100mA, Test Circuit 1		-40°C to +85°C			4	Ω
On-Resistance Flatness	D	$V_{+} = 2.7V$, $0V \le V_{NO}$ or $V_{NC} \le V_{+}$,		+25°C		6	9	Ω
On-ivesistance i latiless	R _{FLAT(ON)}	I _{COM} = -100mA, Test Circui	t 1	-40°C to +85°C			12	Ω
Source OFF Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{+} = 3.6V$, V_{NO} or $V_{NC} = 3.3$ $V_{COM} = 0.3V/3.3V$	V / 0.3V,	-40°C to +85°C			1	μΑ
Channel ON Leakage Current	I _{NC(ON)} , I _{NO(ON)} , I _{COM(ON)}	$V_{+} = 3.6V$, $V_{COM} = 0.3V/3.3V$, V_{NO} or $V_{NC} = 0.3V/3.3V$, or floating		-40°C to +85°C			1	μΑ
DIGITAL INPUTS								
Input High Voltage	V _{INH}			-40°C to +85°C	1.5			V
Input Low Voltage	V_{INL}			-40°C to +85°C			0.4	V
Input Leakage Current	I _{IN}	V ₊ = 2.7V, V _{IN} = 0V or 2.7V		-40°C to +85°C			1	μΑ
DYNAMIC CHARACTERISTIC	S							
Turn-On Time	t _{ON}	V_{NC} or $V_{NO} = 1.5V$, $R_{L} = 300\Omega$,		+25°C		38.0		ns
Turn-Off Time	t _{OFF}	C _L = 35pF, Test Circuit2		+25°C		44.0		ns
Break-Before-Make Time Delay	t _D	V_{NC} or V_{NO} = 1.5V, R_L = 30 C_L = 35pF, Test Circuit4	0Ω,	+25°C		5.8		ns
Charge Injection	Q	$V_G = GND$, $R_G = 0\Omega$, $C_L = 1.0nF$, $Q = C_L \times V_{OUT}$, Test Circuit3		+25°C		2.6		pC
Off Inclation	0	Signal = 0dBm, $R_L = 50\Omega$,	1MHz	z +25°C -	-75		dB	
Off Isolation	O _{ISO}	Test Circuit5	10MHz	+25°C		-55		dB
	V	Olgital – 00DIII, Tt_ – 0012,	1MHz	+25°C		-100		dB
Channel-to-Channel Crosstalk	X _{TALK}		10MHz	+25°C		-60		dB
-3dB Bandwidth	BW	Signal = 0dBm, R_L = 50Ω , Test Circuit7		+25°C		300		MHz
Channel ON Capacitance	$\begin{array}{c} C_{\text{NC(ON)}}, \ C_{\text{NO(ON)}}, \\ C_{\text{COM(ON)}} \end{array}$			+25°C		43.2		pF


Specifications subject to changes without notice.

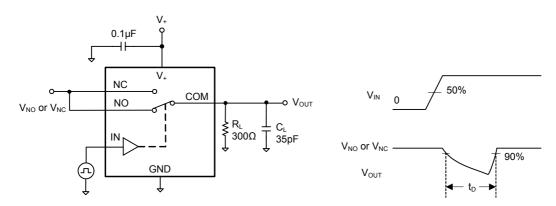
TYPICAL PERFORMANCE CHARACTERISTICS



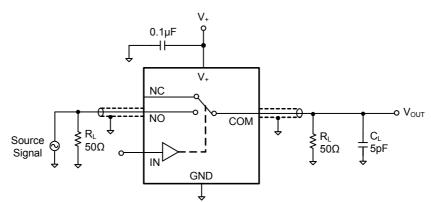



TEST CIRCUITS

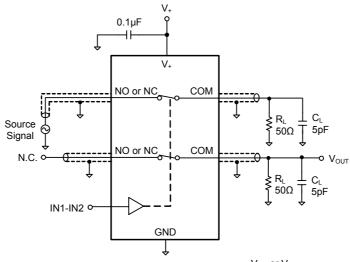
Test Circuit 1. On Resistance



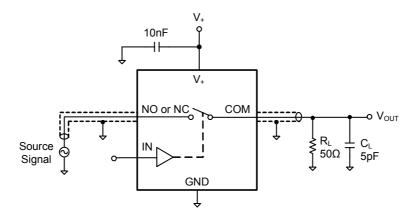
Test Circuit 2. Switching Times (t_{ON} , t_{OFF})



Test Circuit 3. Charge Injection

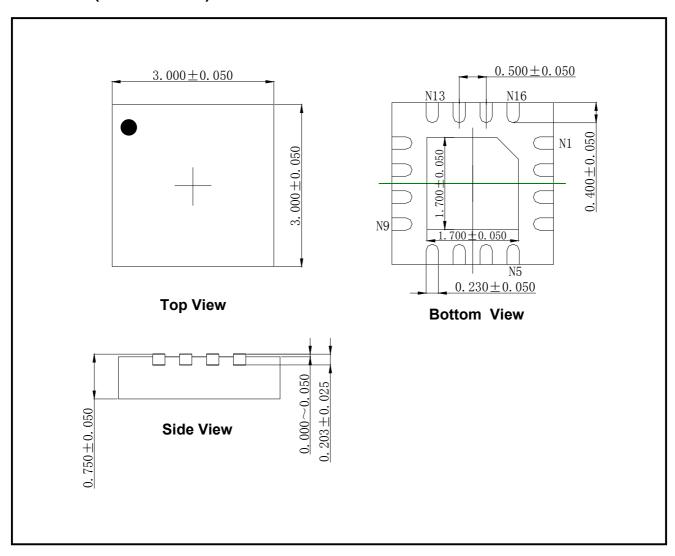

TEST CIRCUITS (Cont.)

Test Circuit 4. Break-Before-Make Time Delay (t_D)


Test Circuit 5. Off Isolation

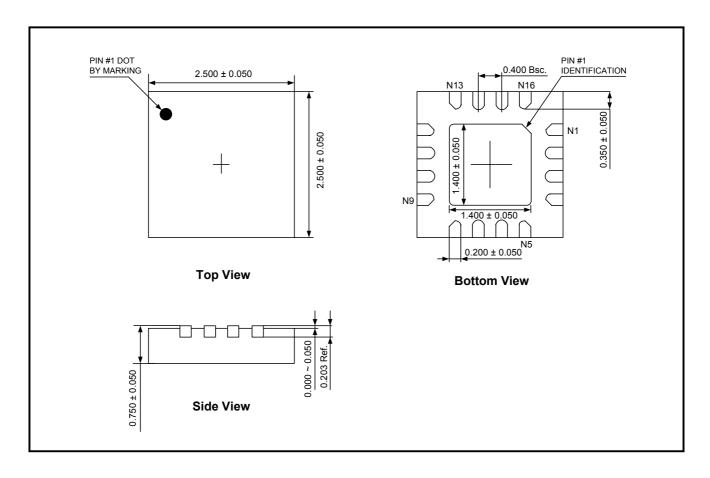
Channel To Channel Crosstalk = $-20 \times log \frac{V_{NO} \text{ or } V_{NC}}{V_{OUT}}$

Test Circuit 6. Channel-to-Channel Crosstalk


TEST CIRCUITS (Cont.)

Test Circuit 7. -3dB Bandwidth

PACKAGE OUTLINE DIMENSIONS


TQFN-16 (3mm × 3mm)

Note: All linear dimensions are in millimeters.

PACKAGE OUTLINE DIMENSIONS

TQFN-16 (2.5mm × 2.5mm)

Note: All linear dimensions are in millimeters.

05/2010 REV. A. 2

SGMICRO is dedicated to provide high quality and high performance analog IC products to customers. All SGMICRO products meet the highest industry standards with strict and comprehensive test and quality control systems to achieve world-class consistency and reliability.

For information regarding SGMICRO Corporation and its products, see www.sg-micro.com

