

$1\Omega/11\Omega$, High Voltage, Rail-to-Rail Negative Signal Passing, Dual, SPDT Analog Switch

GENERAL DESCRIPTION

The SGM3710 is a high voltage, -V_{CC} to +V_{CC} wide range positive and negative signal passing, dual single-pole/double-throw (SPDT) analog switch that is designed to operate from a single 2.7V to 12V power supply. Targeted applications include battery powered equipment that benefit from the SGM3710's low 1 Ω (TYP) on-resistance for dual NO to COM switches, 11 Ω (TYP) on-resistance for dual NC to COM switches, and fast switching speeds.

The SGM3710 is a committed dual single-pole/double-throw (SPDT) switches that consist of two normally open (NO) and two normally closed (NC) switches. This configuration can be used as a dual 2-to-1 multiplexer.

The SGM3710 can pass $-V_{CC}$ to $+V_{CC}$ wide range positive and negative signals with very low distortion.

The SGM3710 is available in Green TQFN-2.6×1.8-16L and SOIC-16 packages. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Wide Supply Range: 2.7V to 12V
- Low On-Resistance for Dual NO to COM Switches:
 1Ω (TYP)

SGM3710

- On-Resistance for Dual NC to COM Switches: 11Ω (TYP)
- -V_{CC} to +V_{CC} Rail-to-Rail Low Distortion
 Positive and Negative Signal Passing
- Fast Switching Times
- High Off-Isolation
- Very Low Crosstalk
- 1.8V Logic Compatible Control Pin
- Break-Before-Make Switching
- -40°C to +85°C Operating Temperature Range
- Available in Green TQFN-2.6×1.8-16L and SOIC-16
 Packages

APPLICATIONS

Portable Instrumentation
Battery-Operated Equipment

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	PERATURE ORDERING NUMBER		PACKING OPTION
SGM3710	TQFN-2.6×1.8-16L	-40°C to +85°C	SGM3710YTQA16G/TR	3710 XXXXX	Tape and Reel, 3000
3GW3710	SOIC-16	-40°C to +85°C	SGM3710YS16G/TR	SGM3710YS16 XXXXX	Tape and Reel, 2500

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0V to 13.2V
IN1, IN2, EN to GND	0V to 6V
Analog Voltage Range (1)(-V _{CC} - 0.3)	V) to ($V_{CC} + 0.3V$)
Continuous Current from NO to COM	±200mA
Continuous Current from NC to COM	±50mA
Peak Current from NO to COM	±250mA
Peak Current from NC to COM	±80mA
I/O Clamp Current (V _I < 0)	30mA
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	7000V
MM	300V
CDM	1000V

NOTE:

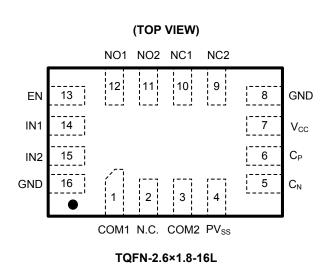
1. Signals on NC, NO, or COM exceeding V_{CC} will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	2.7V to 12V
Operating Temperature Range	40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN		NAME	FUNCTION			
TQFN-2.6×1.8-16L	SOIC-16	NAIVIE	FUNCTION			
1	11	COM1	Common Terminal.			
2	12	N.C.	No Connection.			
3	13	COM2	Common Terminal.			
4	14	PV _{SS}	Negative Supply Voltage Output. Connect one 0.1 μF ceramic capacitor from PV $_{\rm SS}$ to GND.			
5	15	C _N	Charge Pump Flying Capacitor Negative Terminal.			
6	16	C _P	Charge Pump Flying Capacitor Positive Terminal.			
7	1	V _{CC}	Power Supply.			
8, 16	2, 10	GND	Ground.			
9	3	NC2	Normally-Closed Terminal.			
10	4	NC1	Normally-Closed Terminal.			
11	5	NO2	Normally-Open Terminal.			
12	6	NO1	Normally-Open Terminal.			
13	7	EN	Enable Control. When EN = "Low", both NC and NO will be disconnected with COM, negative charge pump doesn't work and the SGM3710 will be in shutdown state. When EN = "High", negative charge pump will work, and the SGM3710 will be in working state, and NC or NO will be connected with COM depending on the logical state of IN.			
14	8	IN1	Digital Control Pin to Connect the COM Terminal to the NO or NC Terminal.			
15	9	IN2	Digital Control Pin to Connect the COM Terminal to the NO or NC Terminal.			

NOTE: NO, NC and COM terminals may be an input or output.

FUNCTION TABLE

Table 1. Function Table of Switch 1:

EN	IN1	COM1	NEGATIVE CHARGE PUMP
0	X	COM1 is disconnected with NO1 and NC1	Turn off
1	0	COM1 = NC1	Turn on
1	1	COM1 = NO1	Turn on

Table 2. Function Table of Switch 2:

EN	IN2	COM2	NEGATIVE CHARGE PUMP
0	X	COM2 is disconnected with NO2 and NC2	Turn off
1	0	COM2 = NC2	Turn on
1	1	COM2 = NO2	Turn on

ELECTRICAL CHARACTERISTICS

(V_{CC} = 5.0V, Full = -40°C to +85°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAM	ETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITC	Н			_			•	
Analog Signal Ra	inge	V_{NO}, V_{NC}, V_{COM}		Full	-V _{CC}		+V _{CC}	V
			-V _{CC} ≤ V _{NO} ≤ V _{CC} - 3V,	+25°C		1	1.25	
0. 0	NO to COM	_	I _{COM} = -50mA, Test Circuit 1	Full			1.7	
On-Resistance	NO 1 00M	R _{on}	$-V_{CC} + 3V \le V_{NC} \le V_{CC} - 3V$	+25°C		11	13	Ω
	NC to COM		I _{COM} = -10mA, Test Circuit 1	Full			18	
	NO to COM		$-V_{CC} \le V_{NO} \le V_{CC} - 3V$.	+25°C		0.03	0.09	
On-Resistance	NO to COM	. 5	I _{COM} = -50mA, Test Circuit 1	Full			0.12	
Match Between Channels	NC to COM	ΔR_{ON}	$-V_{CC} + 3V \le V_{NC} \le V_{CC} - 3V$	+25°C		0.1	0.4	Ω
	NC to COM		I _{COM} = -10mA, Test Circuit 1	Full			0.45	
	NO to COM		$-V_{CC} \le V_{NO} \le V_{CC} - 3V$	+25°C		0.05	0.1	
On-Resistance	NO to COM	Б	I _{COM} = -50mA, Test Circuit 1	Full			0.13	
Flatness	NC to COM	$R_{FLAT(ON)}$	$-V_{CC} + 3V \le V_{NC} \le V_{CC} - 3V$	+25°C		0.15	0.5	Ω
	NC to COM		I _{COM} = -10mA, Test Circuit 1	Full			0.55	
Source OFF Look	raga Current		V _{NO} or V _{NC} = -4.5V, 4.5V,	+25°C		0.01	0.4	
Source OFF Leal	kage Current	I _{NC(OFF)} , I _{NO(OFF)}	V _{COM} = 4.5V, -4.5V	Full			1	μA
Channal ON Last	ka ma Oumanat	I _{NC(ON)} , I _{NO(ON)} ,	V_{NO} or V_{NC} = -4.5V, 4.5V, V_{COM} = floating,	+25°C		0.01	0.4	
Channel ON Leal	Channel ON Leakage Current		or V_{NO} or V_{NC} = floating, V_{COM} = -4.5V, 4.5V	Full			1	μA
DIGITAL INPUTS	3							
Input High Voltag	е	V _{INH}	V _{CC} = 2.7V to 12V	Full	1.4			V
Input Low Voltage	е	V _{INL}	V _{CC} = 2.7V to 12V	Full			0.4	V
Pull Down Resist	or	R _{PULL DOWN}		+25°C		600		kΩ
DYNAMIC CHAR	ACTERISTICS							
Towns On The s	NO to COM		V_{NO} or V_{NC} = 1.0V, R_L = 50 Ω , C_L = 35pF, Test Circuit 2	. 0500		200		
Turn-On Time	NC to COM	t _{on}		+25°C		200		ns
Turn Off Time a	NO to COM		V_{NO} or V_{NC} = 1.0V, R_L = 50 Ω ,	.05%		100		
Turn-Off Time	NC to COM	t _{OFF}	C _L = 35pF, Test Circuit 2	+25°C		60		ns
Break-Before-Ma	ke Time Delay	t _D	V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} = 1.0V, R _L = 50 Ω , C _L = 35pF, Test Circuit 3	+25℃		100		ns
	NO to COM		f = 1kHz, R_L = 32 $Ω$, Signal = 0dBm, Test Circuit 4			-120		- dB
Off Isolation	NO to CON	O _{ISO}	f = 1MHz, R_L = 50Ω, C_L = 5pF, Signal = 0dBm, Test Circuit 4	+25°C		-80		
On isolation	NC to COM	Oiso	f = 1kHz, R_L = 32 $Ω$, Signal = 0dBm, Test Circuit 4	+25 C		-130		
	NO to COM		f = 1MHz, R_L = 50Ω, C_L = 5pF, Signal = 0dBm, Test Circuit 4			-90		
Channel-to-Chan	nel Crosstalk	Υ-	f = 1kHz, R_L = 32 $Ω$, Signal = 0dBm, Test Circuit 5	- +25°C		-110		- dB
Grianner-10-Grian	Her Crosslaik	X _{TALK}	f = 1MHz, R_L = 50Ω, C_L = 5pF, Signal = 0dBm, Test Circuit 5	+20 C		-75		uB
-3dB Bandwidth	NO to COM	BW	$R_L = 50\Omega$, $C_L = 5pF$, Signal = 0dBm,	+25°€		160		MHz
-Jub Dariuwiulii	NC to COM	DVV	Test Circuit 6	+25°C		130		IVI□∠

ELECTRICAL CHARACTERISTICS (continued)

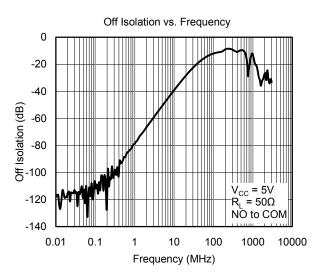
(V_{CC} = 5.0V, Full = -40°C to +85°C. Typical values are at T_A = +25°C, unless otherwise noted.)

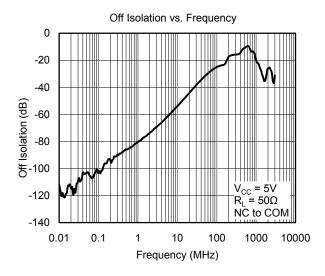
PARAME	TER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Channel ON	NO to COM	C			+25°C		30		pF
Capacitance	NC to COM	C_{ON}			+25 C		40		pΓ
Chargo Injection	NO to COM	0	V _G = GND, R _G :	= 0Ω, C _L = 1.0nF,	+25°C		600		
Charge Injection	NC to COM	Q	Test Circuit 7		+25 C		600		рС
				$V_{NO} = 2V_{PP}, R_L = 600\Omega$			-115		
				V_{NO} = $2V_{PP}$, R_L = 32Ω			-113		
	NO to COM			$V_{NO} = 1V_{PP}, R_{L} = 600\Omega$			-110		dB
	NO to COM			$V_{NO} = 1V_{PP}, R_L = 32\Omega$			-110		
		THD	A-Weighting, Test Circuit 8	$V_{NO} = 0.5 V_{PP}, R_L = 600 \Omega$	+25°C		-107		
Total Harmonic				$V_{NO} = 0.5V_{PP}, R_L = 32\Omega$			-105		
Distortion	NC to COM			$V_{NC} = 2V_{PP}, R_L = 600\Omega$			-113		
				$V_{NC} = 2V_{PP}, R_L = 32\Omega$			-93		
				V_{NC} = $1V_{PP}$, R_L = 600Ω			-110		
				$V_{NC} = 1V_{PP}, R_L = 32\Omega$			-103		
				$V_{NC} = 0.5V_{PP}, R_L = 600\Omega$			-106		
				$V_{NC} = 0.5V_{PP}, R_L = 32\Omega$	1		-102		
Start Up Time		t _{START}	Switch V _{EN} = 0\	V to V _{EN} = 1.4V	+25°C		0.2		ms
POWER REQUIR	EMENTS								
Dower Supply Cur	ront	1	V _{IN} = 0V or 1.4\	./ \/ - 1 4\/	+25°C		300	410	
Power Supply Current		I _{CC}	V _{IN} = UV 01 1.4	v, v _{EN} = 1.4V	Full			415	μA
Power Supply Cur	rent in)/ = 0)/ == 1 1)	/)/ - 0)/	+25°C		0.3	0.8	
Shutdown State		Icc	$V_{IN} = UV OI' 1.4V$	$J_{IN} = 0V \text{ or } 1.4V, V_{EN} = 0V$				1.2	μΑ

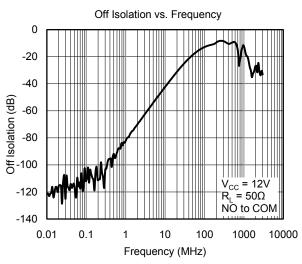
ELECTRICAL CHARACTERISTICS (continued)

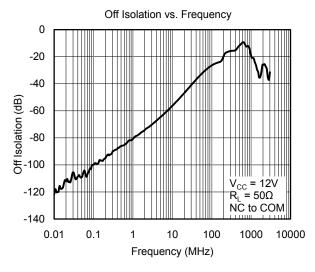
(V_{CC} = 12V, Full = -40°C to +85°C. Typical values are at T_A = +25°C, unless otherwise noted.)

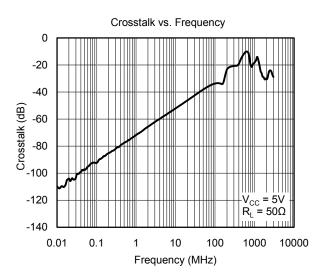
PARAMETER		SYMBOL	CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCI	H							
Analog Signal Rar	nge	V_{NO}, V_{NC}, V_{COM}		Full	-V _{CC}		+V _{CC}	V
			-V _{CC} ≤ V _{NO} ≤ V _{CC} - 3V,	+25°C		1	1.25	
	NO to COM		I _{COM} = -50mA, Test Circuit 1	Full			1.7	Ω
On-Resistance		R _{ON}	$-V_{CC} + 3V \le V_{NC} \le V_{CC} - 3V$	+25°C		11	13	
	NC to COM		I _{COM} = -10mA, Test Circuit 1	Full			18	=
			-V _{CC} ≤ V _{NO} ≤ V _{CC} - 3V,	+25°C		0.03	0.09	
On-Resistance	NO to COM		I _{COM} = -50mA, Test Circuit 1	Full			0.12	=
Match Between Channels		ΔR_{ON}	$-V_{CC} + 3V \le V_{NC} \le V_{CC} - 3V,$	+25°C		0.1	0.4	Ω
	NC to COM		I _{COM} = -10mA, Test Circuit 1	Full			0.45	
			$-V_{CC} \le V_{NO} \le V_{CC} - 3V$	+25°C		0.05	0.1	
On-Resistance	NO to COM		I _{COM} = -50mA, Test Circuit 1	Full			0.13	=
Flatness		$R_{FLAT(ON)}$	$-V_{CC} + 3V \le V_{NC} \le V_{CC} - 3V$	+25°C		0.15	0.5	Ω
	NC to COM		I _{COM} = -10mA, Test Circuit 1	Full			0.55	
			V_{NO} or $V_{NC} = -11.5V$, 11.5V,	+25°C		0.05	1	
Source OFF Leak	age Current	I _{NC(OFF)} , I _{NO(OFF)}	V_{NO} Of $V_{\text{NC}} = -11.5V$, 11.5V, $V_{\text{COM}} = 11.5V$, -11.5V	Full			3	μΑ
		I _{NC(ON)} , I _{NO(ON)} , I _{COM(ON)}	V_{NO} or V_{NC} = -11.5V, 11.5V, V_{COM} = floating, or V_{NO} or V_{NC} = floating, V_{COM} = -11.5V, 11.5V	+25°C		0.05	1	μΑ
Channel ON Leak	age Current			Full			3	
DIGITAL INPUTS			VCOM = -11.5V, 11.5V					
Input High Voltage		V _{INH}	V _{CC} = 2.7V to 12V	Full	1.4			V
Input Low Voltage		V _{INL}	V _{cc} = 2.7V to 12V	Full			0.4	V
Pull Down Resisto		R _{PULL DOWN}		+25°C		600		kΩ
DYNAMIC CHAR		1 GEE BOWN						
	NO to COM		V or V = 1.0V B = 500			200		
Turn-On Time	NC to COM	t _{on}	V_{NO} or V_{NC} = 1.0V, R_L = 50 Ω , C_L = 35pF, Test Circuit 2	+25°C		200		ns
	NO to COM		V_{NO} or V_{NC} = 1.0V, R_L = 50 Ω , C_L = 35pF, Test Circuit 2			100		
Turn-Off Time	NC to COM	t _{OFF}		+25°C		60		ns
	-		V_{NO1} or $V_{NC1} = V_{NO2}$ or $V_{NC2} = 1.0V$,					
Break-Before-Mak	e Time Delay	t _D	$R_L = 50\Omega$, $C_L = 35pF$, Test Circuit 3	+25°C		100		ns
	NO to COM		f = 1kHz, R_L = 32Ω, Signal = 0dBm, Test Circuit 4			-120		- dB
Off Isolation	NO to com	O _{ISO}	f = 1MHz, R_L = 50Ω, C_L = 5pF, Signal = 0dBm, Test Circuit 4	+25°C		-80		
On isolation	NC to COM	Oiso	f = 1kHz, R_L = 32Ω, Signal = 0dBm, Test Circuit 4	+23 C		-130		
	NC to COM		f = 1MHz, R_L = 50Ω, C_L = 5pF, Signal = 0dBm, Test Circuit 4			-90		
Channel to Charry	ol Crosstall	~	f = 1kHz, R_L = 32Ω, Signal = 0dBm, Test Circuit 5	.0500		-110		- dB
Channel-to-Chann	iei Crosstaik	X _{TALK}	$f = 1MHz$, $R_L = 50\Omega$, $C_L = 5pF$, Signal = 0dBm, Test Circuit 5	— +25°C		-75		
040.0	NO to COM	D14/	Signal = 0dBm, $R_1 = 50\Omega$, $C_1 = 5pF$,	25.5		160		MHz
-3dB Bandwidth	NC to COM	BW	Test Circuit 6	+25°C		130		

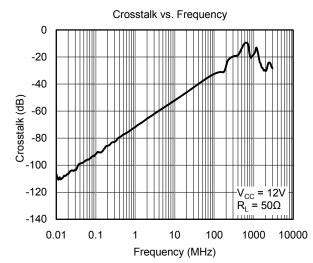

ELECTRICAL CHARACTERISTICS (continued)

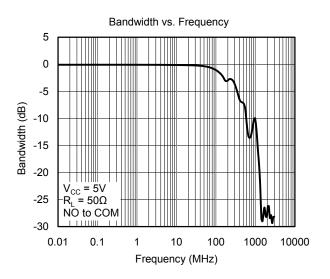

(V_{CC} = 12V, Full = -40°C to +85°C. Typical values are at T_A = +25°C, unless otherwise noted.)

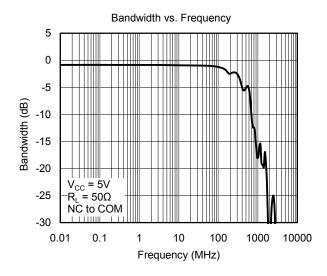

PARAME	TER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
Channel ON					+25°C		30		pF
Capacitance	NC to COM	C_{ON}					40		pΓ
Chargo Injection	NO to COM	0	V _G = GND, R _G :	= 0Ω, C _L = 1.0nF,	+25°C		800		0
Charge Injection	NC to COM	Q	Test Circuit 7		+25 C		800		pC
				$V_{NO} = 2V_{PP}, R_L = 600\Omega$			-115		
				V_{NO} = $2V_{PP}$, R_L = 32Ω			-113		
	NO to COM			$V_{NO} = 1V_{PP}, R_{L} = 600\Omega$			-110		dB
	NO to COM			$V_{NO} = 1V_{PP}, R_L = 32\Omega$			-110		
		THD	A-Weighting, Test Circuit 8	$V_{NO} = 0.5 V_{PP}, R_L = 600 \Omega$.0500		-107		
Total Harmonic				$V_{NO} = 0.5V_{PP}, R_L = 32\Omega$			-105		
Distortion	NC to COM			$V_{NC} = 2V_{PP}, R_L = 600\Omega$	+25°C		-113		
				$V_{NC} = 2V_{PP}, R_L = 32\Omega$			-93		
				V_{NC} = $1V_{PP}$, R_L = 600Ω			-110		
				$V_{NC} = 1V_{PP}, R_L = 32\Omega$			-103		
				$V_{NC} = 0.5V_{PP}, R_L = 600\Omega$			-106		
				$V_{NC} = 0.5V_{PP}, R_L = 32\Omega$			-102		
Start Up Time		t _{START}	Switch V _{EN} = 0\	V to V _{EN} = 1.4V	+25°C		0.2		ms
POWER REQUIR	EMENTS								
Dower Supply Cur	ront	1	V _{IN} = 0V or 1.4\	./ \/ - 1 4\/	+25°C		400	540	
Power Supply Current		I _{CC}	V _{IN} = 0 V 01 1.41	v, v _{EN} - 1.4v	Full			550	μA
Power Supply Cur	rent in)/ = 0)/ == 1 1)	V _{IN} = 0V or 1.4V, V _{EN} = 0V			0.5	1.2	
Shutdown State		Icc	$V_{IN} = UV OI' 1.4V$					1.5	μΑ

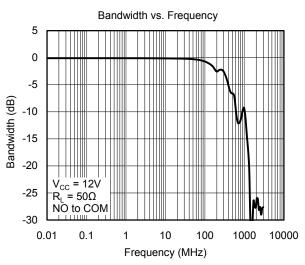

TYPICAL PERFORMANCE CHARACTERISTICS

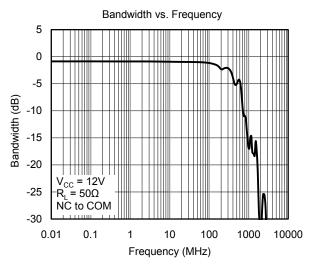

 $T_A = +25$ °C, unless otherwise noted.

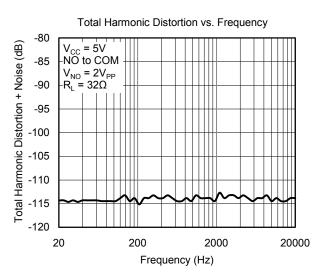


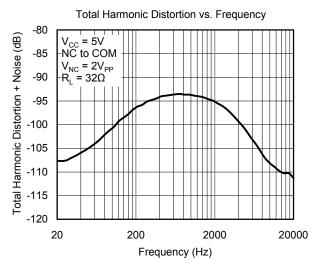


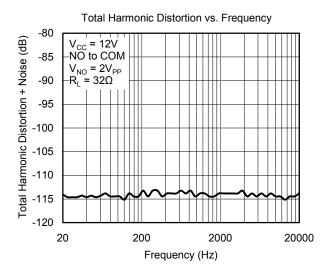


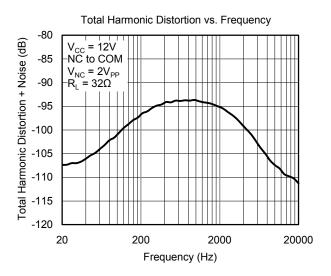


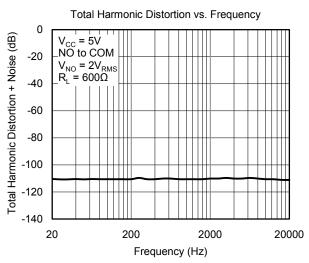

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

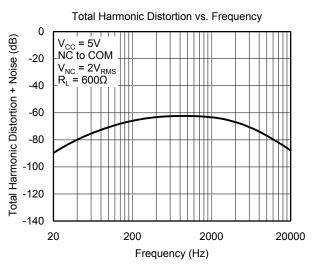

 $T_A = +25$ °C, unless otherwise noted.

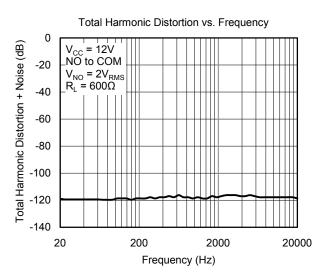


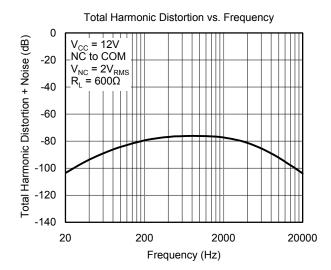


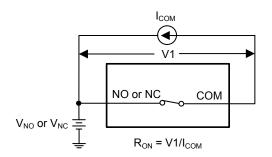


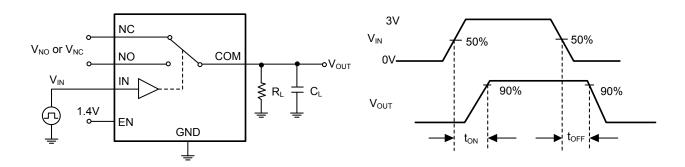


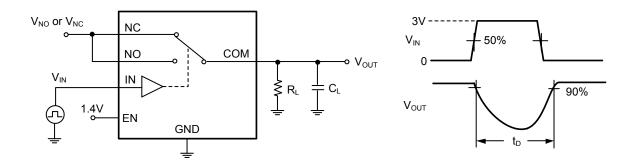

TYPICAL PERFORMANCE CHARACTERISTICS (continued)


 $T_A = +25$ °C, unless otherwise noted.

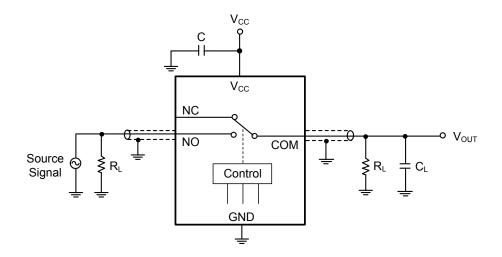




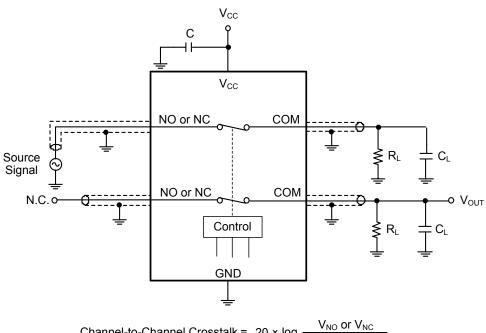



TEST CIRCUITS

Test Circuit 1. On Resistance

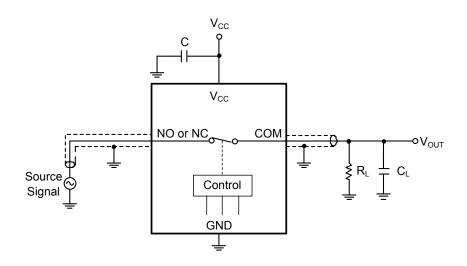


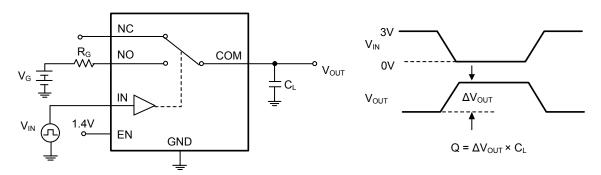
Test Circuit 2. Switching Times (t_{ON} , t_{OFF})



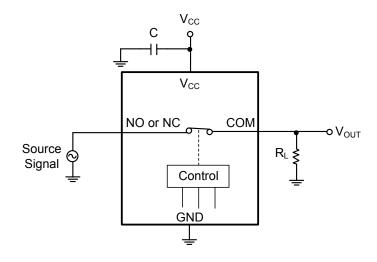
Test Circuit 3. Break-Before-Make Time Delay (t_D)

TEST CIRCUITS (continued)

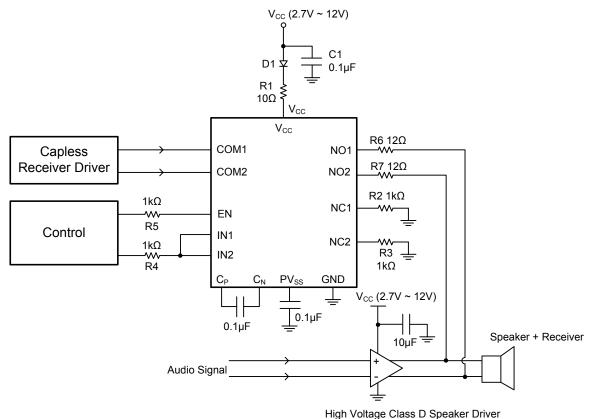

Test Circuit 4. Off Isolation


Channel-to-Channel Crosstalk = -20 × log -

Test Circuit 5. Channel-to-Channel Crosstalk


TEST CIRCUITS (continued)

Test Circuit 6. -3dB Bandwidth


Test Circuit 7. Charge Injection (Q)

Test Circuit 8. Total Harmonic Distortion (THD)

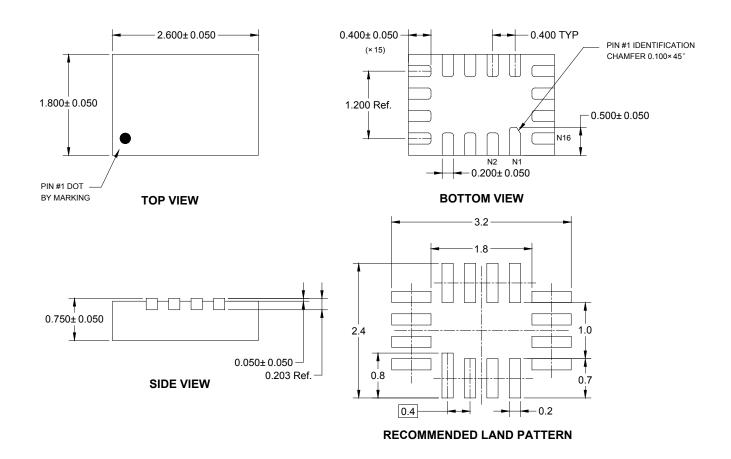
APPLICATION INFORMATION

Speaker + Receiver is always used in portable devices, and high voltage class D speaker driver is used to drive speaker in order to provide high audio volume. But the high output voltage of class D speaker driver will damage the receiver driver. The SGM3710 provides the safe isolation between receiver driver and high voltage class D speaker driver. The SGM3710 provides low R_{ON} channels to pass the positive and negative signals from capless receiver driver. The circuit is shown in Figure 1.

. ng.: vollage elace 2 epeaner 2...

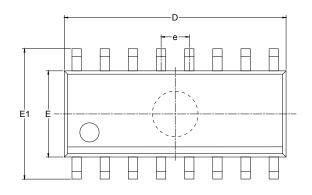
Figure 1. Typical Application Circuit

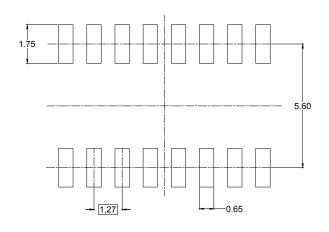
REVISION HISTORY

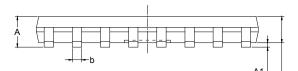

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

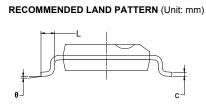
NOVEMBER 2016 - REV.A to REV.A.1

Changed Electrical Characteristics section	5~8
Changed Test Circuits section	
Changes from Original (AUGUST 2016) to REV.A	

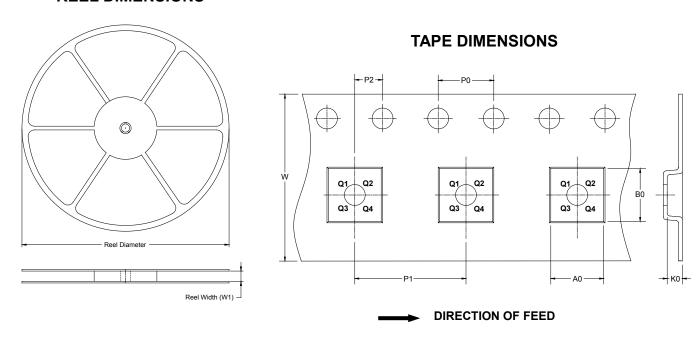



PACKAGE OUTLINE DIMENSIONS TQFN-2.6×1.8-16L




NOTE: All linear dimensions are in millimeters.

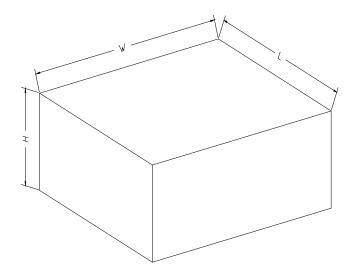
PACKAGE OUTLINE DIMENSIONS SOIC-16



Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	9.800	10.200	0.386	0.402	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-2.6×1.8-16L	7"	9.0	2.01	2.81	0.93	4.0	4.0	2.0	8.0	Q1
SOIC-16	13"	16.4	6.50	10.30	2.10	4.0	8.0	2.0	16.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	
13"	386	280	370	5	