

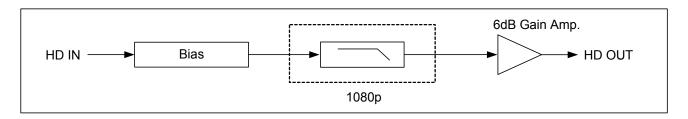
SGM9152 Single Channel, Video Filter Driver for HD (1080p)

PRODUCT DESCRIPTION

The SGM9152 video filter is intended to replace passive LC filters and drivers with an integrated device. The 6th-order channel offers High Definition (HDp) filter. The SGM9152 may be directly driven by a DC-coupled DAC output or an AC-coupled signal. Internal bias circuitry provides constant bias voltage for AC-coupled input.

The output can be AC- or DC-coupled. DC coupling the output removes the need for large output coupling capacitors.

The SGM9152 is available in Green MSOP-8 package. It operates over an ambient temperature range of -40°C to +85°C.


FEATURES

- 6dB Gain for 1080p High Definition Mode
- Bias Mode Active with AC-Coupled Input
- Bias Mode Inactive with DC-Coupled Input
- AC- or DC-Coupled Output
- DC-Coupled Output Eliminates AC Coupling Capacitor
- Available in Green MSOP-8 Package
- -40°C to +85°C Operating Temperature Range

APPLICATIONS

Set-Top Boxes
Communication Devices
Portable and Handheld Products
Personal Video Recorders
Video on Demand
DVD Players
HDTVs

BLOCK DIAGRAM

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM9152A (6dB Gain)	MSOP-8	-40℃ to +85℃	SGM9152AYMS8G/TR	SGM9152A YMS8 XXXXX	Tape and Reel, 4000

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

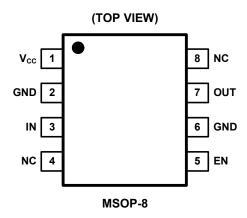
Input Voltage Range	. GND - 0.3V to V_{CC} + 0.3V
Supply Voltage, V _{CC}	6.0V
Junction Temperature	150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s	s)260°C
ESD Susceptibility	
HBM	8000V
MM	400V

RECOMMENDED OPERATING CONDITIONS

Operating Voltage Range	3.1V to 5.5V
Operating Temperature Range.	40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

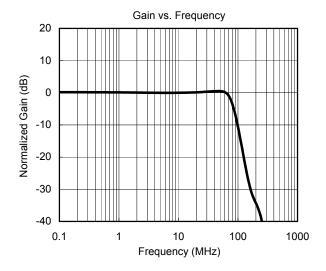
DISCLAIMER

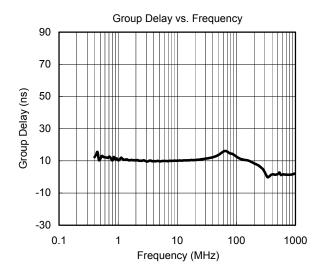
SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time

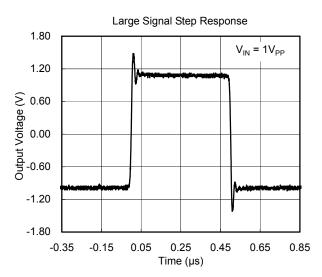
PIN CONFIGURATION

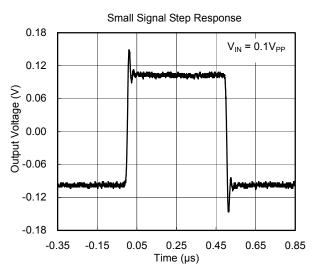
PIN DESCRIPTION

PIN	NAME	FUNCTION	
1	V _{CC}	Power Supply.	
2, 6	GND	Ground.	
3	IN	Video Input.	
4, 8	NC	No Internal Connection.	
5	EN	Enable Pin.	
7	OUT	Video Output.	


ELECTRICAL CHARACTERISTICS


 $(V_{CC}$ = 5V, SGM9152A V_{IN} = $1V_{PP}$, T_A = +25°C, R_{SOURCE} = 37.5Ω ; the input is AC-coupled with $0.1\mu F$; the output is AC-coupled with $220\mu F$ into 150Ω , referenced to 400kHz, unless otherwise noted.)


PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
DC ELECTRICAL CHARACTERISTICS	S				
Operating Voltage Range (V _{CC})		3.1	5	5.5	V
Quiescent Current (I _Q)	No load		15	20	mA
Output Level Shift Voltage (V _{OLS})	V _{IN} = 0V, no load		350	530	mV
Voltage Gain of SGM9152A (A _V)	R _L = 150Ω	5.75	6.1	6.35	dB
Output Voltage High Swing	V_{IN} = 3V, R_L = 150 Ω to GND		4.8		V
Shutdown Current			1.3	15	μA
Video Input Voltage Range	Referenced to GND if DC-coupled		1.4		V_{PP}
Power Supply Rejection Ratio (PSRR)	DC		52		dB
V _{IH} of EN Pin		2.4			V
V _{IL} of EN Pin				0.8	V
1080p HIGH DEFINITION MODE ELEC	CTRICAL CHARACTERISTICS				
Channel Gain	Active video input range = 1V _{PP}		6		dB
-1dB Bandwidth of SGM9152A	R _L = 150Ω		70		MHz
-3dB Bandwidth of SGM9152A	R _L = 150Ω		79		MHz
Filter Response (Normalized Gain)	f _{IN} = 400kHz to 148MHz		26.5		dB
Group Delay Variation (D/DT)	Difference between 400kHz and 70MHz		3.5		ns
Slew Rate	2V output step, 80% to 20%		300		V/µs
Fall Time	2V output step, 80% to 20%		4		ns
Rise Time	2V output step, 80% to 20%				ns
Signal to Noise Ratio (SNR)	100kHz to 70MHz		-63		dB
Enable Time (t _{ON})			1.2		μs
Disable Time (t _{OFF})			0.4		μs


TYPICAL PERFORMANCE CHARACTERISTICS

 V_{CC} = 5V, SGM9152A V_{IN} = 1V_{PP}, T_A = +25°C, R_{SOURCE} = 37.5 Ω ; the input is AC-coupled with 0.1 μ F; the output is AC-coupled with 220 μ F into 150 Ω , referenced to 400kHz, unless otherwise noted.

TYPICAL APPLICATION CIRCUITS

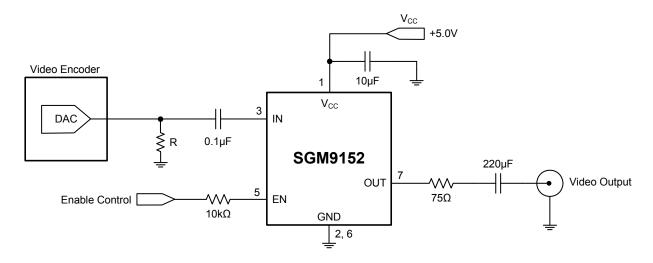


Figure 1. AC-Coupled Input and Output Application Circuit

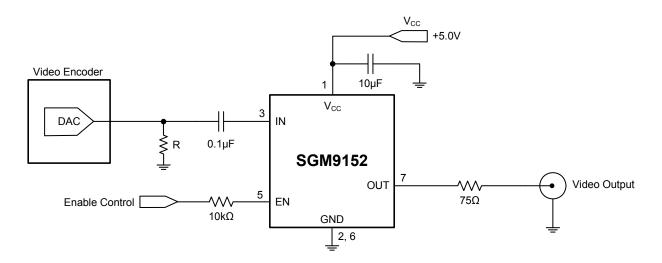


Figure 2. AC-Coupled Input and DC-Coupled Output Application Circuit

NOTE:

1. Power supply V_{CC} must be sequenced on first before input video signals.

APPLICATION INFORMATION

Application Circuits

The SGM9152 video filter provides 6dB gain from input to output. In addition, the input is slightly offset to optimize the output driver performance. The offset is held to the minimum required value to decrease the standing DC current into the load.

For symmetric signals like Chroma, U, V, Pb and Pr, the average DC bias is fairly constant and the input can be AC-coupled. DAC output can also drive these same signals without the AC coupling capacitor.

I/O Configurations

For an AC-coupled DAC drive with AC-coupled output, use the configuration in Figure 3.

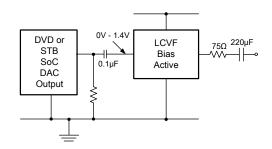


Figure 3. AC-Coupled Input and Output

Alternatively, if the DAC's average DC output level causes the signal to exceed the range from 0V to 1.4V, it can be AC-coupled as shown in Figure 4.

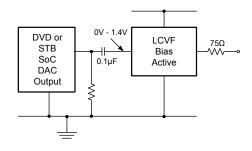


Figure 4. AC-Coupled Input, DC-Coupled Output

For a DC-coupled DAC drive with DC-coupled output, use the configuration in Figure 5.

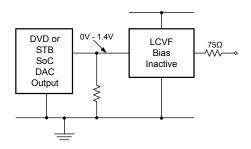


Figure 5. DC-Coupled Input and Output

NOTE: The video tilt or line time distortion is dominated by the AC coupling capacitor. The value may need to be increased beyond 220 μ F to obtain satisfactory operation in some applications.

Power Dissipation

The SGM9152 output drive configuration must be considered when calculating overall power dissipation. Care must be taken not to exceed the maximum die junction temperature. The following equations can be used to calculate the power dissipation and internal temperature rise.

$$T_{J} = T_{A} + P_{D} \cdot \theta_{JA} \tag{1}$$

where:

$$P_D = V_{CC} \cdot I_{CC} - (V_O^2/R_L)$$
 (2)

where:

$$V_O = 2V_{IN} + 0.35V$$
 (3)

V_{IN} = RMS value of input signal

 $I_{CC} = 15mA$

 $V_{CC} = 5.0V$

R_L = channel load resistance

Board layout can also affect thermal characteristics. Refer to the Layout Considerations section for details.

The SGM9152 is specified to operate with output currents typically less than 50mA. Internal amplifiers are current limited to a maximum of 80mA and should withstand brief-duration short-circuit conditions. This capability is not quaranteed.

APPLICATION INFORMATION

Output Considerations

The selection of the coupling capacitor is a function of the subsequent circuit input impedance and the leakage current of the input being driven. In order to obtain the highest quality output video signal the series termination resistor must be placed as close to the device output pin as possible. This greatly reduces the parasitic capacitance and inductance effect on the SGM9152 output driver. Recommended distance from device pin to series termination resistor should be no greater than 0.1 inches.

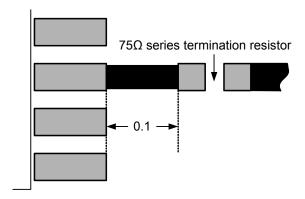


Figure 6. Distance from Device Pin to Series Termination Resistor

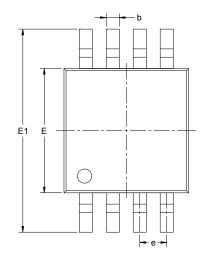
Thermal Considerations

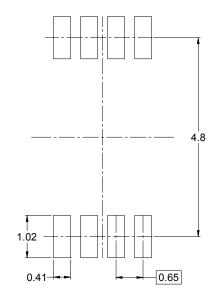
Since the interior of systems such as set-top boxes, TVs and DVD players are at +70°C, consideration must be given to providing an adequate heat sink for the device package for maximum heat dissipation. When designing a system board, determine how much power each device dissipates. Ensure that devices of high power are not placed in the same location, such as directly above (top plane) or below (bottom plane) each other on the PCB.

Layout Considerations

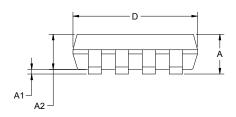
General layout and supply bypassing play a major role in high-frequency performance and thermal characteristics. We offer a demonstration board to guide layout and aid device evaluation. The demo board is a four-layer board with full power and ground planes. Following this layout configuration provides optimum performance and thermal characteristics for the device. For the best results, follow the steps and recommended routing rules listed below.

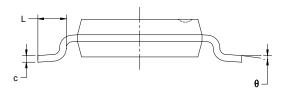
Recommended Routing/Layout Rules


- · Do not run analog and digital signals in parallel.
- Use separate analog and digital power planes to supply power.
- · Do not run traces on top of the ground plane.
- · Run no traces over ground/power splits.
- · Avoid routing at 90-degree angles.
- Minimize clock and video data trace length differences.
- Include $0.01\mu F$ and $0.1\mu F$ ceramic power supply bypass capacitors.
- Place the $0.1\mu F$ capacitor within 0.1 inches of the device power pin.
- Place the $0.01\mu F$ capacitor within 0.75 inches of the device power pin.
- For multi-layer boards, use a large ground plane to help dissipate heat.
- For two-layer boards, use a ground plane that extends beyond the device body at least 0.5 inches on all sides. Include a metal paddle under the device on the top layer.
- · Minimize all trace lengths to reduce series inductance.
- Place a 75Ω series resistor within 0.5 inches of the output pin to isolate the output driver from board parasitics.

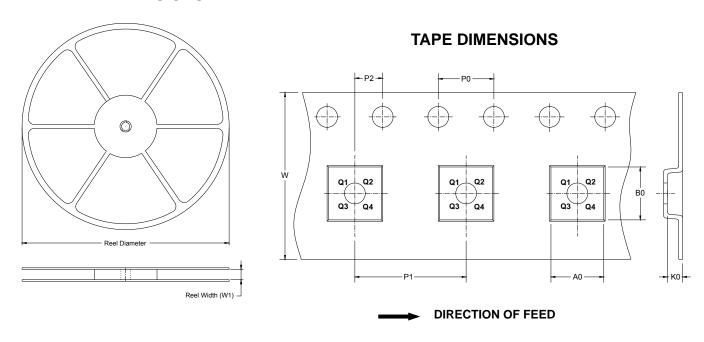

PCB Thermal Layout Considerations

- Understand the system power requirements and environmental conditions.
- · Maximize thermal performance of the PCB.
- Consider using 70µm of copper for high-power designs.
- Make the PCB as thin as possible by reducing FR4 thickness.
- · Use vias in the power pad to tie adjacent layers together.
- Remember that baseline temperature is a function of board area, not copper thickness.
- Consider modeling techniques a first-order approximation.


PACKAGE OUTLINE DIMENSIONS


MSOP-8

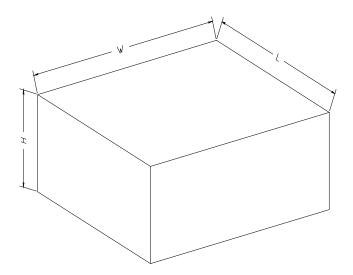
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
Е	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.650 BSC		0.026	BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
MSOP-8	13"	12.4	5.2	3.3	1.5	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)			Pizza/Carton	
13"	386	280	370	5	200002

REVISION HISTORY

VERSION	DATE	PAGE	LOCATION	REMARK