

SGM8602 2.2mA, 12MHz, Low Noise, Rail-to-Rail I/O Tiny Package, CMOS Operational Amplifier

GENERAL DESCRIPTION

The SGM8602 is a dual, low noise, low voltage and low power operational amplifier that can be designed into a wide range of applications. The SGM8602 has a high gain-bandwidth product of 12MHz, a slew rate of $9V/\mu s$ and a quiescent current of 2.2mA at 5V.

The SGM8602 is designed to provide optimal performance in low voltage and low noise systems. It provides rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground. The operating supply range is from 2.1V to 5.5V.

The dual SGM8602 is available in Green SOT-23-8 and TDFN-2×3-8L packages. It is specified over the extended -40°C to +125°C industrial temperature range.

FEATURES

- Rail-to-Rail Input and Output
- 5.1mV Maximum Input Offset Voltage
- High Gain-Bandwidth Product: 12MHz
- High Slew Rate: 9V/µs
- Settling Time to 0.1% with 2V Step: 0.2µs
- Overload Recovery Time: 0.4µs
- Low Noise: $9nV/\sqrt{Hz}$ at 10kHz
- Supply Voltage Range: 2.1V to 5.5V
- Input Voltage Range: -0.1V to +5.6V with V_s = 5.5V
- Low Power: 2.2mA (TYP) Supply Current
- -40°C to +125°C Operating Temperature Range
- Available in Green SOT-23-8 and TDFN-2×3-8L Packages

APPLICATIONS

Sensors Audio Active Filters A/D Converters Communications Test Equipment Cellular and Cordless Phones Laptops and PDAs Photodiode Amplification Battery-Powered Instrumentation

OVERSTRESS CAUTION

ESD SENSITIVITY CAUTION

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	TEMPERATURE ORDERING		PACKING OPTION
SGM8602 -	SOT-23-8	-40°C to +125°C	SGM8602XN8G/TR	SUDXX	Tape and Reel, 3000
	TDFN-2×3-8L	-40°C to +125°C	SGM8602XTDC8G/TR	8602 XXXX	Tape and Reel, 3000

NOTE: XX = Date Code. XXXX = Date Code.

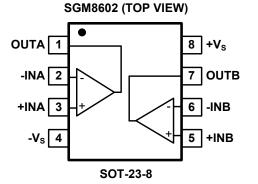
Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

reliability.

MARKING INFORMATION

Date code - Month ("A" = Jan. "B" = Feb. ··· "L" = Dec.)
Date code - Year ("A" = 2010, "B" = 2011 ···)
Chip I.D.

For example: SUDFA (2015, January)


ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S	6V
Input Common Mode Voltage R	ange
	(-V _S) - 0.3V to (+V _S) + 0.3V
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 1	0s)+260°C
ESD Susceptibility	
НВМ	8000V
MM	400V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	2.1V to 5.5V
Operating Temperature Range	40°C to +125°C

PIN CONFIGURATIONS

NOTE: 1. Exposed pad can be connected to -V_S or left floating.

because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or

any other conditions beyond those indicated in the operational

section of the specification is not implied. Exposure to absolute

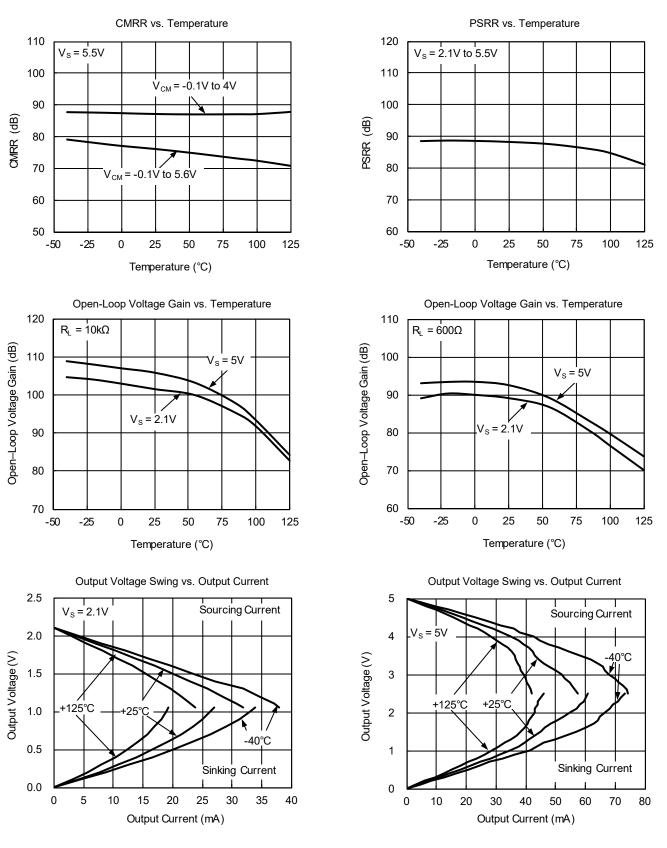
maximum rating conditions for extended periods may affect

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage

ELECTRICAL CHARACTERISTICS

(At T_A = +25°C, V_S = 5V, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.)

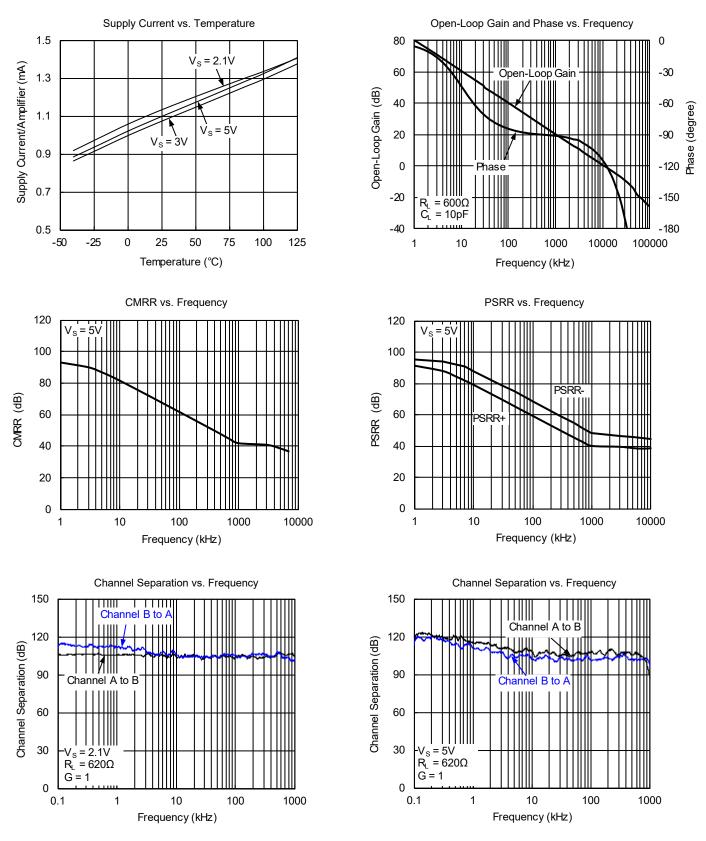
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
INPUT CHARACTERISTICS						
Input Offect Veltere (V			1.2	5.1	mV	
Input Offset Voltage (V _{os})	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$		5.5			
Input Bias Current (I _B)			1		pА	
Input Offset Current (I _{os})			1		pА	
Input Common Mode Voltage Range (V_{CM})	V _S = 5.5V	-0.1		5.6	V	
	$V_{\rm S}$ = 5.5V, $V_{\rm CM}$ = - 0.1V to 4V	67	84		- dB	
Common Mode Rejection Ratio (CMRR)	T _A = -40°C to +125°C	66				
Common mode Rejection Ratio (CMRR)	$V_{\rm S}$ = 5.5V, $V_{\rm CM}$ = - 0.1V to 5.6V	60	75		dD	
	T _A = -40°C to +125°C	59			- dB	
	$R_L = 10k\Omega$, $V_{OUT} = 0.05V$ to 4.95V	97	104		JD	
	T _A = -40°C to +125°C	72			dB	
Open-Loop Voltage Gain (A _{OL})	R_L = 600 Ω , V_{OUT} = 0.15V to 4.85V	84	92		dB	
	T _A = -40°C to +125°C	64				
Input Offset Voltage Drift ($\Delta V_{OS} / \Delta T$)			4.7		µV/⁰C	
OUTPUT CHARACTERISTICS		1				
Output Voltage Swing from Rail (V_{OL})	$R_L = 10k\Omega$		6	12	— mV	
	T _A = -40°C to +125°C			17		
	R _L = 600Ω		75	100	— mV	
	T _A = -40°C to +125°C			144		
		52	65		— mA	
Output Current (I _{OUT})	T _A = -40°C to +125°C	36				
POWER SUPPLY	1					
Operating Voltage Range		2.1		5.5	V	
	V _S = +2.1V to +5.5V, V _{CM} = (-V _S) + 0.5V	68	82			
pout Common Mode Voltage Range (V _{CM}) pormon Mode Rejection Ratio (CMRR) poen-Loop Voltage Gain (A _{OL}) pout Offset Voltage Drift (Δ V _{OS} / Δ T) JTPUT CHARACTERISTICS utput Voltage Swing from Rail (V _{OL}) utput Current (I _{OUT}) DWER SUPPLY perating Voltage Range ower Supply Rejection Ratio (PSRR) uiescent Current (I _Q) /NAMIC PERFORMANCE ain-Bandwidth Product (GBP) ew Rate (SR) ettling Time to 0.1% (t _S)	T _A = -40°C to +125°C	63			dB	
	I _{OUT} = 0		2.2	2.8		
Quiescent Current (I _Q)	T _A = -40°C to +125°C			3.6	– mA	
DYNAMIC PERFORMANCE	1					
Gain-Bandwidth Product (GBP)	R _L = 600Ω		12		MHz	
Slew Rate (SR)	G = 1, 2V output step		9.0		V/µs	
Settling Time to 0.1% (t_s)	G = 1, 2V output step		0.2		μs	
Overload Recovery Time	$V_{IN} \times Gain = V_S$		0.4	1	μs	
Phase Margin (φ ₀)	R _L = 600Ω		65		•	
NOISE PERFORMANCE	1	1	I	1	1	
	f = 1kHz		13			
Input Voltage Noise Density (e _n)	f = 10kHz		9		nV/√ _H ;	

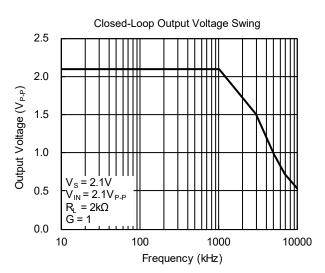

ELECTRICAL CHARACTERISTICS (continued)

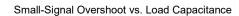
(At T_A = +25°C, V_S = 2.1V, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.)

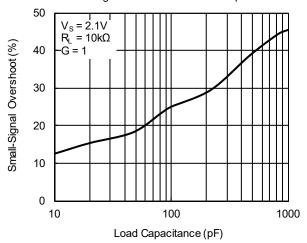
PARAMETER	CONDITIONS MIN		TYP	MAX	UNITS	
INPUT CHARACTERISTICS	•	•				
			1.2	5.5		
Input Offset Voltage (V _{os})	T _A = -40°C to +125°C			5.9	mV	
Input Bias Current (I _B)			1		pА	
Input Offset Current (I _{os})			1		pА	
Input Common Mode Voltage Range (V_{CM})	V _S = 2.1V	-0.1		2.2	V	
	$V_{\rm S}$ = 2.1V, $V_{\rm CM}$ = -0.1V to 0.6V	60	77		<u> </u>	
	T _A = -40°C to +125°C	51			dB	
Common Mode Rejection Ratio (CMRR)	$V_{\rm S}$ = 2.1V, $V_{\rm CM}$ = -0.1V to 2.2V	53	68			
	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	46			- dB	
	R_L = 10k Ω , V_{OUT} = 0.05V to 2.05V	90	100			
	$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$	68			dB	
Open-Loop Voltage Gain (A _{OL})	$R_L = 600\Omega$, $V_{OUT} = 0.15V$ to 1.95V	75	88			
	T _A = -40°C to +125°C	63			- dB	
Input Offset Voltage Drift (ΔV _{os} /ΔT)			4.5		µV/⁰C	
OUTPUT CHARACTERISTICS		I	1	•	•	
	R _L = 10kΩ		4	10	mV	
	T _A = -40°C to +125°C			12		
Output Voltage Swing from Rail (V_{OL})	R _L = 600Ω		36	51		
	T _A = -40°C to +125°C			67	— mV	
• • • • • • • •		15	30			
Output Current (I _{OUT})	T _A = -40°C to +125°C	7			- mA	
POWER SUPPLY		I				
	I _{OUT} = 0		2.2	2.8		
Quiescent Current (I _Q)	T _A = -40°C to +125°C			3.6	mA	
DYNAMIC PERFORMANCE		•				
Gain-Bandwidth Product (GBP)	R _L = 600Ω		11.5		MHz	
Slew Rate (SR)	G = 1, 2V output step		8.6		V/µs	
Settling Time to 0.1% (t_s)	G = 1, 2V output step		0.2		μs	
Overload Recovery Time	V _{IN} × Gain = V _S		0.7		μs	
Phase Margin (ϕ_0)	R _L = 600Ω		65		0	
NOISE PERFORMANCE	1	1	1	1	1	
	f = 1kHz		15			
Input Voltage Noise Density (e _n)	f = 10kHz		9	1	nV/√⊞	

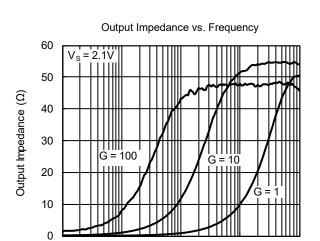
TYPICAL PERFORMANCE CHARACTERISTICS


At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.

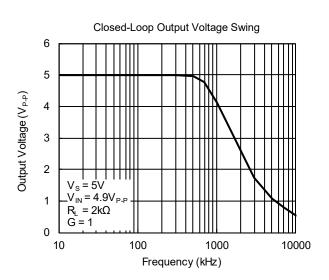

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

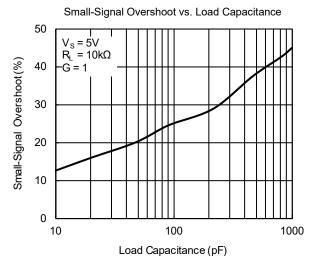

At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.




TYPICAL PERFORMANCE CHARACTERISTICS (continued)

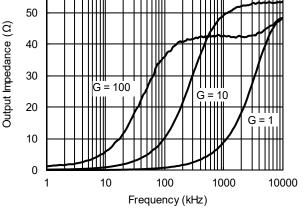
At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.




100

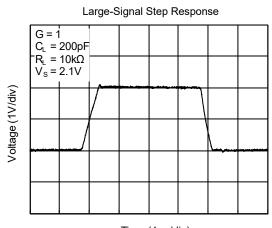
Frequency (kHz)

1000

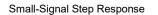

10000

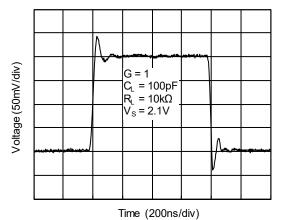
60

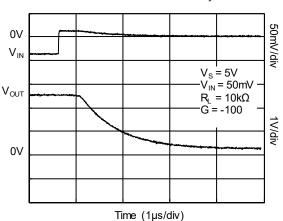
SG Micro Corp

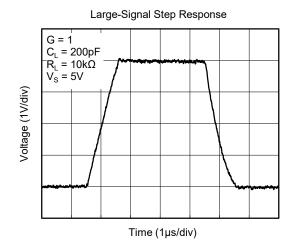

10

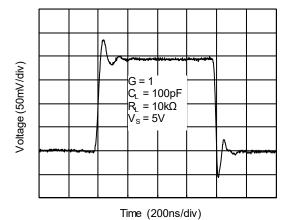
1

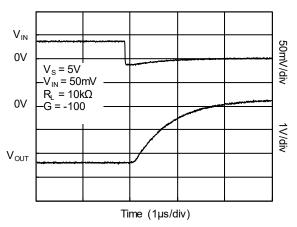

SGM8602


TYPICAL PERFORMANCE CHARACTERISTICS (continued)


At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.

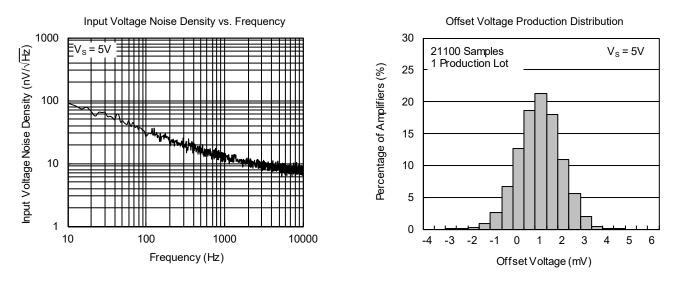

Time (1µs/div)




Positive Overload Recovery

Small-Signal Step Response

Negative Overload Recovery



SG Micro Corp

SGM8602

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_{CM} = $V_S/2$, R_L = 600 Ω , unless otherwise noted.

APPLICATION NOTES

Driving Capacitive Loads

The SGM8602 can directly drive 4700pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive driving capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor R_{ISO} and the load capacitor C_L form a zero to increase stability. The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. Note that this method results in a loss of gain accuracy because R_{ISO} forms a voltage divider with the R_{LOAD}.

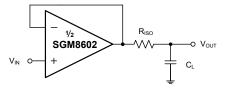


Figure 1. Indirectly Driving Heavy Capacitive Load

An improved circuit is shown Figure 2. It provides DC accuracy as well as AC stability. R_F provides the DC accuracy by connecting the inverting input with the output. C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

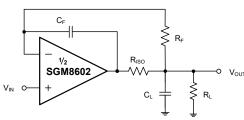


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's closed-loop gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power-Supply Bypassing and Layout

The SGM8602 operates from either a single 2.1V to 5.5V supply or dual $\pm 1.05V$ to $\pm 2.75V$ supplies. For single-supply operation, bypass the power supply +V_S with a 0.1µF ceramic capacitor which should be placed close to the +V_S pin. For dual-supply operation, both the +V_S and the -V_S supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. 2.2µF tantalum capacitor can be added for better performance.

Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible.

For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency current loop area small to minimize the EMI (electromagnetic interference).

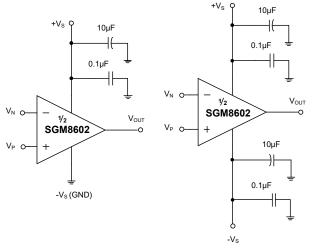


Figure 3. Amplifier with Bypass Capacitors

Grounding

A ground plane layer is important for SGM8602 circuit design. The length of the current path in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

Input-to-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be in parallel. This helps reduce unwanted positive feedback.

TYPICAL APPLICATION CIRCUITS

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistor ratios are equal $(R_4/R_3 = R_2/R_1)$, then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

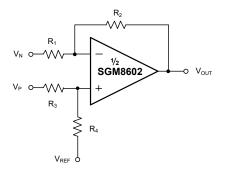


Figure 4. Differential Amplifier

Instrumentation Amplifier

The circuit in Figure 5 performs the same function as that in Figure 4 but with a high input impedance.

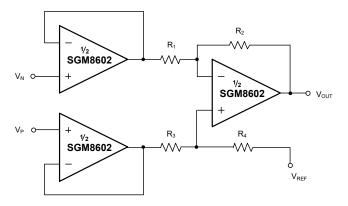


Figure 5. Instrumentation Amplifier

Active Low-Pass Filter

The low-pass filter shown in Figure 6 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2 C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. Feedback resistors with large values can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

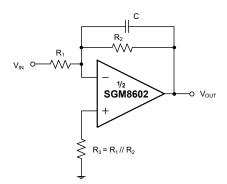


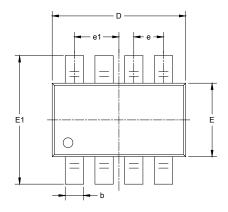
Figure 6. Active Low-Pass Filter

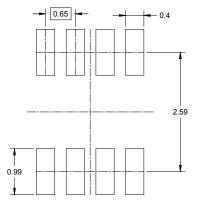
REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

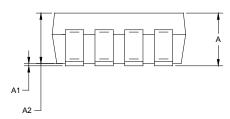
JANUARY 2018 - REV.A to REV.A.1

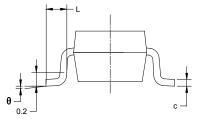
Changes from Original (AUGUST 2015) to REV.A


Changed from product preview to production data.....

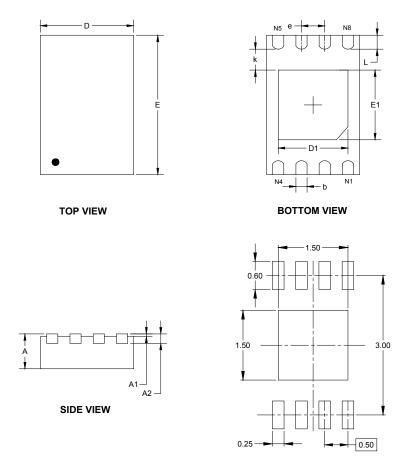


All


PACKAGE OUTLINE DIMENSIONS


SOT-23-8

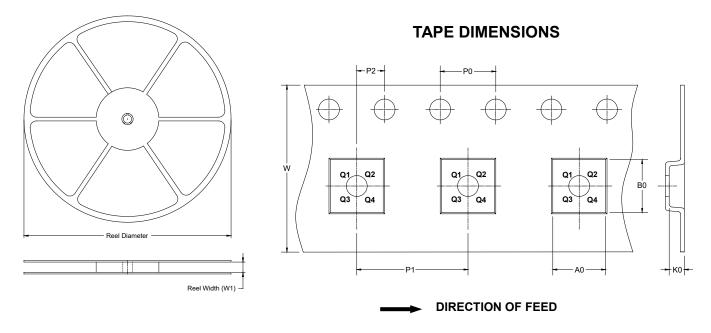
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches		
,	MIN	MAX	MIN	MAX	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.650 BSC		0.026 BSC		
e1	0.975 BSC		0.038	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

PACKAGE OUTLINE DIMENSIONS

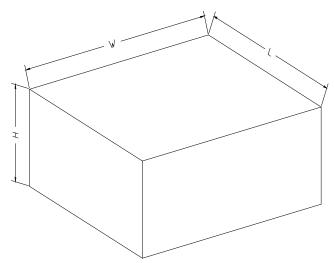
TDFN-2×3-8L


RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	B REF	0.008 REF		
D	1.924	2.076	0.076	0.082	
D1	1.400	1.600	0.055	0.063	
E	2.924	3.076	0.115	0.121	
E1	1.400	1.600	0.055	0.063	
k	0.200) MIN	0.008	3 MIN	
b	0.200	0.300	0.008	0.012	
е	0.500) TYP	0.020) TYP	
L	0.224 0.376		0.009	0.015	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-8	7"	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3
TDFN-2×3-8L	7"	9.5	2.30	3.30	1.10	4.0	4.0	2.0	8.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	DD0002

