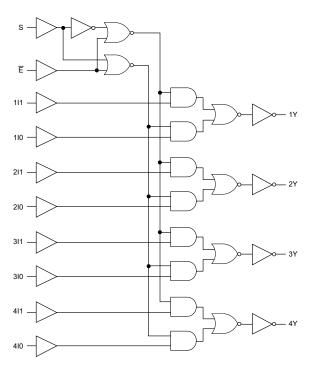
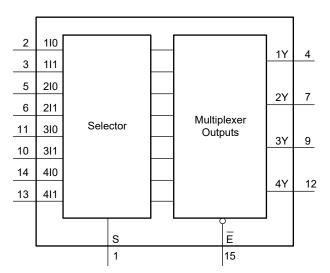
GENERAL DESCRIPTION


The 74LVC157 is a quad 2-input multiplexer designed for 1.2V to 3.6V operating voltage. The enable input (\overline{E}) is active low. When pin \overline{E} is high, all of the outputs (1Y to 4Y) are forced low regardless of all the other input conditions. When pin \overline{E} is low, four bits of data are selected from one of two sources that are determined by the state of the common data selection input (S), and are routed to the four outputs. The S input can also be used as function generator. The four outputs present the true (non-inverting) selected data.

It is useful for implementing highly irregular logic by generating any 4 of the 16 different functions of two variables with one variable common.

The device is the logic implementation of a 4-pole, 2-position switch, where the position of the switch is determined by the logic levels applied to pin S.

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of the device as a translator in mixed 3.3V and 5V applications.


LOGIC SYMBOL

FEATURES

- 5V Tolerant Inputs for Interfacing with 5V Logic
- Wide Supply Voltage Range: 1.2V to 3.6V
- CMOS Low Power Consumption
- Direct Interface with TTL Levels
- -40°C to +125°C Operating Temperature Range
- Available in a Green TQFN-2.5×3.5-16L Package

LOGIC DIAGRAM

FUNCTION TABLE

CONTRO	L INPUT	INF	OUTPUT	
Ē	S	nI0	nl1	nY
Н	X	X	X	L
L	L	L	X	L
L	L	Н	X	Н
L	Н	X	L	L
L	Н	Х	Н	Н

H = High Voltage Level

L = Low Voltage Level

X = Don't Care

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
74LVC157	TQFN-2.5×3.5-16L	-40°C to +125°C	74LVC157XTRG16G/TR	R5ARG XXXXX	Tape and Reel, 6000

MARKING INFORMATION

NOTE: XXXXX = Date Code, Trace Code and Vendor Code.

XXX	XX	
		Vendor Code
		Trace Code
		Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

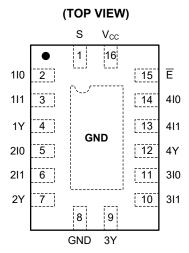
ABSOLUTE MAXIMUM RATINGS (1)

RECOMMENDED OPERATING CONDITIONS

Supply Voltage, V _{CC}	1.65V to 3.6V
Data Retention Only, V _{CC}	1.2V to 3.6V
Input Voltage, V _I	0V to 5.5V
Output Voltage, Vo	0V to V _{CC}
Input Transition Rise and Fall Rate, $\Delta t/\Delta V$	
V _{CC} = 1.65V to 2.7V	20ns/V (MAX)
V _{CC} = 2.7V to 3.6V	10ns/V (MAX)
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

- 1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.
- 2. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 3. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

TQFN-2.5×3.5-16L

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	S	Common Data Selection Input.
2, 5, 11, 14	110, 210, 310, 410	Source 0 Data Inputs.
3, 6, 10, 13	111, 211, 311, 411	Source 1 Data Inputs.
4, 7, 9, 12	1Y, 2Y, 3Y, 4Y	Multiplexer Outputs.
8	GND	Ground.
15	Ē	Enable Input (Active Low).
16	V_{CC}	Supply Voltage.
Exposed Pad	GND	This is not a supply pin. The exposed pad can be left floating or soldered to the ground.

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +125°C, all typical values are measured at V_{CC} = 3.3V and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS	
		V _{CC} = 1.2V		Full	1.05				
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{CC} = 1.65V to	V _{CC} = 1.65V to 1.95V		0.65 × V _{CC}			.,	
High-Level Input Voltage	V _{IH}	$V_{CC} = 2.3V \text{ to } 2$	2.7V	Full	1.5			V	
		$V_{CC} = 2.7V \text{ to } 3$	3.6V	Full	1.8				
		V _{CC} = 1.2V		Full			0.4		
Lavelavallanut Valtana		V _{CC} = 1.65V to	1.95V	Full			0.35 × V _{CC}	V	
Low-Level Input Voltage	V _{IL}	V _{CC} = 2.3V to 2	2.7V	Full			0.7	V	
		$V_{CC} = 2.7V \text{ to } 3$	3.6V	Full			0.8		
	age V _{он}		V_{CC} = 1.65V to 3.6V, I_{O} = -100 μ A	Full	V _{CC} - 0.05	V _{CC} - 0.005		V	
		$V_{I} = V_{IH}$ or V_{IL}	V _{CC} = 1.65V, I _O = -4mA	Full	1.45	1.55			
Lligh Lovel Output Voltage			V _{CC} = 2.3V, I _O = -8mA	Full	2.05	2.15			
High-Level Output Voltage			V _{CC} = 2.7V, I _O = -12mA	Full	2.4	2.55			
			V _{CC} = 3.0V, I _O = -18mA	Full	2.55	2.75			
			$V_{CC} = 3.0V, I_{O} = -24mA$	Full	2.45	2.7			
				V_{CC} = 1.65V to 3.6V, I_{O} = 100 μ A	Full		0.005	0.05	
			$V_{CC} = 1.65V, I_{O} = 4mA$	Full		0.1	0.2		
Low-Level Output Voltage	V _{OL}	$V_I = V_{IH}$ or V_{IL}	$V_{CC} = 2.3V, I_{O} = 8mA$	Full		0.15	0.25	V	
			$V_{CC} = 2.7V, I_0 = 12mA$	Full		0.15	0.3		
			$V_{CC} = 3.0V, I_{O} = 24mA$	Full		0.3	0.55		
Input Leakage Current	I _I	V _{CC} = 3.6V, V _I = 5.5V or GND		Full		±0.05	±10	μΑ	
Supply Current	I _{cc}	$V_{CC} = 3.6V$, $V_I = V_{CC}$ or GND, $I_O = 0A$		Full		0.05	10	μΑ	
Additional Supply Current	Δl _{CC}	Per input pin, $V_1 = V_{CC} - 0.6V$	/ _{CC} = 2.7V to 3.6V, , I _O = 0A	Full		0.05	20	μΑ	
Input Capacitance	Cı	$V_{CC} = 0V \text{ to } 3.6$	SV, $V_I = GND$ to V_{CC}	+25°C		7		pF	

DYNAMIC CHARACTERISTICS

(For test circuit, see Figure 1. Full = -40°C to +125°C, all typical values are measured at T_A = +25°C and V_{CC} = 1.2V, 1.8V, 2.5V, 2.7V and 3.3V respectively, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS		MIN (1)	TYP	MAX (1)	UNITS
			V _{CC} = 1.2V	+25°C		15.0		
			V _{CC} = 1.65V to 1.95V	Full	0.5	7.0	16.5	
		nI0, nI1 to nY, see Figure 2	V _{CC} = 2.3V to 2.7V	Full	0.5	4.0	10.0	ns
			V _{CC} = 2.7V	Full	0.5	4.0	10.0	
			V _{CC} = 3.0V to 3.6V	Full	0.5	4.0	8.5	8.5
			V _{CC} = 1.2V	+25°C		12.0		
			V _{CC} = 1.65V to 1.95V	Full	0.5	6.0	19.0	8.5 19.0 11.0 11.0 9.5 18.0 10.5 9.0
Propagation Delay (2)	t _{PD}	Ē to nY, see Figure 3	V _{CC} = 2.3V to 2.7V	Full	0.5	4.0	11.0	
		l sacrigare o	V _{CC} = 2.7V	Full	0.5	4.0	11.0	
			V _{CC} = 3.0V to 3.6V	Full	0.5	4.0	9.5	
			V _{CC} = 1.2V	+25°C		14.0		-
			V _{CC} = 1.65V to 1.95V	Full	0.5	8.0	18.0	
		S to nY, see Figure 2	V _{CC} = 2.3V to 2.7V	Full	0.5	4.0	10.5	ns
		Sec rigure 2	V _{CC} = 2.7V	Full	0.5	4.0	10.5	
			V _{CC} = 3.0V to 3.6V	Full	0.5	4.0	9.0	
Output Skew Time	t _{SK(O)}	$V_{CC} = 3.0V \text{ to } 3.6$	V	Full		0.5	1.5	ns
Power Dissipation Capacitance (3)			V _{CC} = 1.65V to 1.95V	+25°C		15		
		Per input, $V_{L} = GND$ to V_{CC}	V _{CC} = 2.3V to 2.7V	+25°C		16		pF
- 1		,	V _{CC} = 3.0V to 3.6V	+25°C		17		

NOTES:

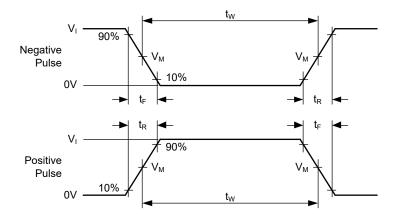
- 1. Specified by design and characterization; not production tested.
- 2. t_{PD} is the same as t_{PLH} and $t_{\text{PHL}}.$
- 3. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

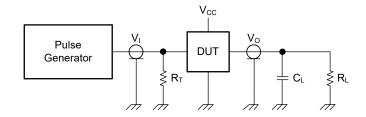
$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$

where:

 f_i = Input frequency in MHz.

 f_o = Output frequency in MHz.


 C_L = Output load capacitance in pF.


 V_{CC} = Supply voltage in Volts.

N = Number of inputs switching.

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = Sum of outputs.$

TEST CIRCUIT

Test conditions are given in Table 1.

Definitions for test circuit:

R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

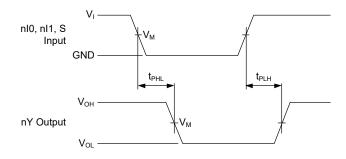
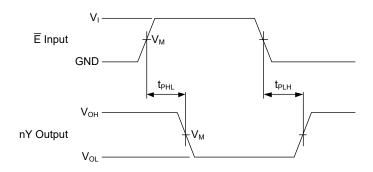

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

Figure 1. Test Circuit for Measuring Switching Times

Table 1. Test Conditions

SUPPLY VOLTAGE	INPUT		LO	AD
V _{cc}	Vı	t _R , t _F	Cr	R_L
1.2V	V _{CC}	≤ 2ns	30pF	1kΩ
1.65V to 1.95V	V _{CC}	≤ 2ns	30pF	1kΩ
2.3V to 2.7V	V _{CC}	≤ 2ns	30pF	500Ω
2.7V	2.7V	≤ 2.5ns	50pF	500Ω
3.0V to 3.6V	2.7V	≤ 2.5ns	50pF	500Ω

WAVEFORMS



Test conditions are given in Table 1.

Measurement points are given in Table 2.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Figure 2. Data Inputs (nI0, nI1) and Common Data Selection Input (S) to Output (nY) Propagation Delays

Test conditions are given in Table 1.

Measurement points are given in Table 2.

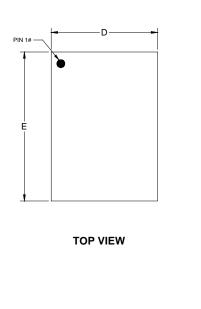
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

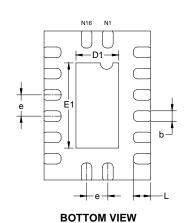
Figure 3. Enable Input $(\overline{\mathsf{E}})$ to Output (nY) Propagation Delays

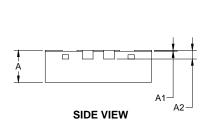
Table 2. Measurement Points

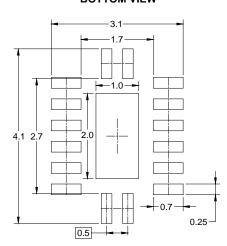
SUPPLY VOLTAGE	INF	OUTPUT	
V _{cc}	Vı	V _M ⁽¹⁾	V _M
1.2V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}
1.65V to 1.95V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}
2.3V to 2.7V	V _{CC}	0.5 × V _{CC}	0.5 × V _{CC}
2.7V	2.7V	1.5V	1.5V
3.0V to 3.6V	2.7V	1.5V	1.5V

NOTE:

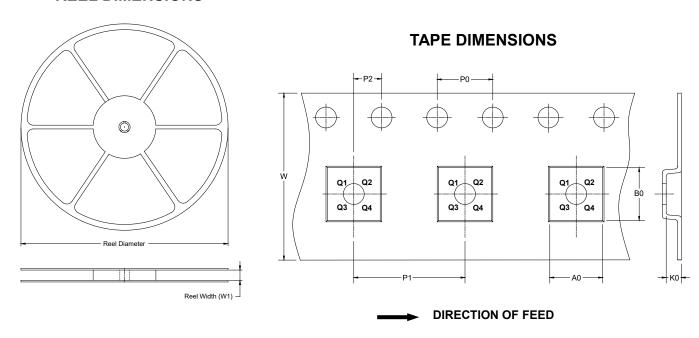

1. The measurement points should be V_{IH} or V_{IL} when the input rising or falling time exceeds 2.5ns.


REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


OCTOBER 2021 – REV.A to REV.A.1	Page
Updated Dynamic Characteristics section	5
Added Table 2 and note in Waveforms section	7
Changes from Original (FEBRUARY 2021) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS TQFN-2.5×3.5-16L

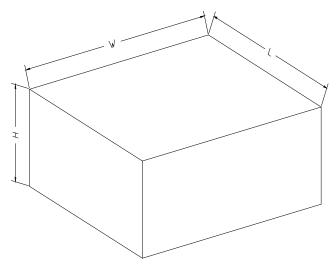


RECOMMENDED LAND PATTERN (Unit: mm)

Cymhal	Dimensions In Millimeters					
Symbol	MIN	MOD	MAX			
Α	0.70	0.75	0.80			
A1	0.00	0.00 0.02				
A2	0.203 REF					
b	0.20	0.25	0.30			
D	2.40	2.50	2.60			
D1	0.85	1.00	1.15			
E	3.40	3.50	3.60			
E1	1.85	2.00	2.15			
е	0.45	0.50	0.55			
L	0.30	0.40	0.50			

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TQFN-2.5×3.5-16L	13"	12.4	2.80	3.80	0.95	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13″	386	280	370	5