SGM8061/SGM8062/SGM8063 500MHz, Rail-to-Rail Output, CMOS Operational Amplifiers

GENERAL DESCRIPTION

The SGM8061 (single), SGM8062 (dual) and SGM8063 (single with shutdown) are rail-to-rail output voltage feedback amplifiers offering ease of use and low cost. They have bandwidth and slew rate typically found in current feedback amplifiers. All have a wide input common mode voltage range and output voltage swing, making them easy to use on single supply as low as 2.5V.

Despite being low cost, the SGM8061 series provide excellent overall performance. They offer 500MHz (G = +1) wide bandwidth, and 130MHz (G = +1) bandwidth along with 0.1dB flatness. They offer a typical low power of 8.2mA/amplifier.

The SGM8061 series have low distortion and fast settling time, making them ideal for buffering high speed A/D or D/A converters. The SGM8063 has a power-down disable feature that reduces the supply current to 75μ A. These features make the SGM8063 ideal for portable and battery-powered applications where size and power are critical.

The single SGM8061 is available in Green SOT-23-5 and SOIC-8 packages. The dual SGM8062 is available in Green SOIC-8 and MSOP-8 packages. The single with shutdown SGM8063 is available in Green SOT-23-6 and SOIC-8 packages. They are specified over the extended -40 $^{\circ}$ C to +125 $^{\circ}$ C temperature range.

APPLICATIONS

Imaging Photodiode Preamp Professional Video and Camera Hand Set DVD/CD Base Station Filter A-to-D Driver

FEATURES

- Low Cost
- Rail-to-Rail Output
- Input Offset Voltage: 8mV (MAX)
- High Speed: 500MHz, -3dB Bandwidth (G = +1) 420V/µs, Slew Rate 16ns Settling Time to 0.1% with 2V Step
- Supply Voltage Range: 2.5V to 5.5V
- Input Voltage Range: -0.2V to 3.8V with $V_S = 5V$
- Excellent Video Specs (R_L = 150Ω, G = +2): Gain Flatness: 0.1dB to 80MHz Diff Gain: 0.015%, Diff Phase: 0.05 Degree
- Low Supply Current: 8.2mA/Amplifier (TYP) 75µA Shutdown Current for SGM8063
- -40℃ to +125℃ Operating Temperature Range
- Small Packaging: SGM8061 Available in Green SOT-23-5 and SOIC-8 Packages SGM8062 Available in Green MSOP-8 and SOIC-8 Packages SGM8063 Available in Green SOT-23-6 and SOIC-8 Packages

Frequency (MHz)

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SCM8061	SOT-23-5	-40°C to +125°C	SGM8061XN5/TR	8061	Tape and Reel, 3000
SGM8061	SOIC-8	3 -40°C to +125°C SGM8061XS/TR SGM8061XS XXXXX		SGM8061XS XXXXX	Tape and Reel, 2500
SGM8062	MSOP-8	-40°C to +125°C	SGM8062XMS/TR	SGM8062 XMS XXXXX	Tape and Reel, 3000
001110002	SOIC-8	-40°C to +125°C	SGM8062XS/TR	SGM8062XS XXXXX	Tape and Reel, 2500
SCM8062	SOT-23-6	-40°C to +125°C	SGM8063XN6/TR	8063	Tape and Reel, 3000
SGM8063	SOIC-8	-40°C to +125°C	SGM8063XS/TR	SGM8063XS XXXXX	Tape and Reel, 2500

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

XXXXX

Vendor Code
Date Code - Week

—— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +Vs to -Vs6V
Input Common Mode Voltage Range
$(-V_S) - 0.3V$ to $(+V_S) + 0.3V$
Package Thermal Resistance @ T _A = +25°C
SOT-23-5, θ _{JA}
SOT-23-6, θ _{JA}
SOIC-8, θ _{JA}
MSOP-8, θ _{JA} 155°C/W
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM1000V
MM400V

RECOMMENDED OPERATING CONDITIONS

Operating Voltage Range	2.5V to 5.5V
Operating Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

500MHz, Rail-to-Rail Output, CMOS Operational Amplifiers

PIN CONFIGURATIONS

SGM8062 (TOP VIEW)

SGM8063 (TOP VIEW) OUT 1 -Vs 2 +IN 3 SOT-23-6

ELECTRICAL CHARACTERISTICS

(G = +2, R_F = 402 Ω , R_L = 150 Ω , unless otherwise noted.)

		SGM8061/2/3						
		TYP		MIN/N	MAX OVE	RATURE		
PARAMETER	CONDITIONS			0°C	-40°C	-40°C		
				to	to	to	UNITS	MIN
		+25℃	+25℃	+70℃	+85℃	+125℃		/MAX
DYNAMIC PERFORMANCE								
-3dB Small-Signal Bandwidth	$G = +1, V_{OUT} = 0.1V_{P-P}, R_F = 24\Omega,$	500					MHz	TYP
	$G = +1, V_{OUT} = 0.1V_{P-P}, R_F = 24Ω, R_L = 1kΩ$	550					MHz	TYP
	$G = +2, V_{OUT} = 0.1V_{P-P}, R_L = 50\Omega$	130					MHz	TYP
	$G = +2, V_{OUT} = 0.1V_{P-P}, R_L = 150\Omega$	210					MHz	TYP
	G = +2, V_{OUT} = 0.1 V_{P-P} , R_L = 1 $k\Omega$	250					MHz	TYP
	G = +2, V_{OUT} = 0.1 V_{P-P} , R_L = 10kΩ	420					MHz	TYP
Gain-Bandwidth Product	G = +10, R _L = 150Ω	200					MHz	TYP
	$G = +10, R_{L} = 1k\Omega$	230					MHz	TYP
Bandwidth for 0.1dB Flatness	$G = +1, V_{OUT} = 0.1 V_{P-P}, R_F = 24 \Omega$	130					MHz	TYP
	$G = +2, V_{OUT} = 0.1V_{P-P}, R_F = 330\Omega$	80					MHz	TYP
Slew Rate	G = +1, 2V Output Step	320/-370					V/µs	TYP
	G = +2, 2V Output Step	350/-320					V/µs	TYP
	G = +2, 4V Output Step	420/-390					V/µs	TYP
Rise-and-Fall Time	G = +2, V_{OUT} = 0.2 V_{P-P} , 10% to 90%	4					ns	TYP
	G = +2, V_{OUT} = 2 V_{P-P} , 10% to 90%	4.5					ns	TYP
Settling Time to 0.1%	G = +2, 2V Output Step	16					ns	TYP
Overload Recovery Time	$V_{IN}G = +V_S$	6.2					ns	TYP
NOISE/DISTORTION PERFORMANCE								
Input Voltage Noise Density	f = 1MHz	5.6					nV/ _{√Hz}	TYP
Differential Gain Error (NTSC)	G = +2, R _L = 150Ω	0.015					%	TYP
Differential Phase Error (NTSC)	G = +2, R _L = 150Ω	0.05					degree	TYP
DC PERFORMANCE								
Input Offset Voltage (V _{OS})		±2	±8	±8.5	±9	±9.3	mV	MAX
Input Offset Voltage Drift		3					µV/°C	TYP
Input Bias Current (I _B)		6					pА	TYP
Input Offset Current (Ios)		2					pА	TYP
Open-Loop Gain (A _{OL})	V_{OUT} = 0.3V to 4.7V, R _L = 150 Ω	80	75	75	74	70	dB	MIN
	V_{OUT} = 0.2V to 4.8V, R_L = 1k Ω	104	90	90	89	80	dB	MIN
INPUT CHARACTERISTICS								
Input Common Mode Voltage Range (V_{CM})		-0.2 to 3.8					V	TYP
Common Mode Rejection Ratio (CMRR)	V _{CM} = -0.1V to 3.5V	80	66	65	64	62	dB	MIN
OUTPUT CHARACTERISTICS								
Output Voltage Swing from Rail	R _L = 150Ω	0.12					V	TYP
	$R_L = 1k\Omega$	0.03					V	TYP
Output Current		120	100	98	93	87	mA	MIN
Closed-Loop Output Impedance	f < 100kHz	0.015					Ω	TYP
POWER-DOWN DISABLE								
(SGM8063 ONLY)								
Turn-On Time		50					ns	TYP
Turn-Off Time		44					ns	TYP
DISABLE Voltage-Off			0.8				V	MAX
DISABLE Voltage-On			2				V	MIN
POWER SUPPLY								
Operating Voltage Range			2.5	2.7	2.7	2.7	V	MIN
			5.5	5.5	5.5	5.5	V	MAX
Quiescent Current/Amplifier		8.2	10	10.3	10.5	11	mA	MAX
Supply Current when Disabled		75	120	127	130	139	μA	MAX
(SGM8063 only)								
Power Supply Rejection Ratio (PSRR)	ΔV_{S} = 2.7V to 5.5V, V_{CM} = (-V _S) + 0.5V	80	66	66	65	63	dB	MIN

500MHz, Rail-to-Rail Output, CMOS Operational Amplifiers

TYPICAL PERFORMANCE CHARACTERISTICS

At T_A = +25°C, V_S = 5V, G = +2, R_F = 402 Ω , R_G = 402 Ω , and R_L =150 Ω connected to $V_S/2$, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = 5V, G = +2, R_F = 402 Ω , R_G = 402 Ω , and R_L =150 Ω connected to $V_S/2$, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = 5V, G = +2, R_F = 402 Ω , R_G = 402 Ω , and R_L =150 Ω connected to $V_S/2$, unless otherwise noted.

Frequency(kHz)

1

0.01

500MHz, Rail-to-Rail Output, CMOS Operational Amplifiers

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = 5V, G = +2, R_F = 402 Ω , R_G = 402 Ω , and R_L =150 Ω connected to $V_S/2$, unless otherwise noted.

Time (25ns/div)

Time (200ns/div)

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = 5V, G = +2, R_F = 402 Ω , R_G = 402 Ω , and R_L =150 Ω connected to $V_S/2$, unless otherwise noted.

APPLICATION NOTES

Driving Capacitive Loads

The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive driving capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor R_{ISO} and the load capacitor C_L form a zero to increase stability. The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. Note that this method results in a loss of gain accuracy because R_{ISO} forms a voltage divider with the R_{LOAD}.

Figure 1. Series Resistor Isolating Capacitive Load

An improved circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. R_F provides the DC accuracy by connecting the inverting input with the output. C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's closed-loop gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power Supply Bypassing and Layout

The SGM806x family operates from either a single 2.7V to 5.5V supply or dual $\pm 1.35V$ to $\pm 2.75V$ supplies. For single-supply operation, bypass the power supply $+V_s$ with a 0.1µF ceramic capacitor which should be placed close to the $+V_s$ pin. For dual-supply operation, both the $+V_s$ and the $-V_s$ supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. 2.2µF tantalum capacitor can be added for better performance.

Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the operational amplifier's inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible.

For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency current loop area small to minimize the EMI (electromagnetic interference).

Figure 3. Amplifier with Bypass Capacitors

Grounding

A ground plane layer is important for circuit design. The length of the current path in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance.

Input-to-Output Coupling

To minimize capacitive coupling, the input and output signal traces should not be in parallel. This helps reduce unwanted positive feedback.

TYPICAL APPLICATION CIRCUITS

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistor ratios are equal $(R_4/R_3 = R_2/R_1)$, then $V_{OUT} = (V_P - V_N) \times R_2/R_1 + V_{REF}$.

Figure 4. Differential Amplifier

Active Low-Pass Filter

The low-pass filter shown in Figure 5 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2 C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. Feedback resistors with large values can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

Figure 5. Active Low-Pass Filter

Driving Video

The SGM806x can be used in video applications like in Figure 6.

Figure 6. Typical Video Driving

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

JANUARY 2019 – REV.A.1 to REV.A.2 Added MSOP-8 Package. All Changed Absolute Maximum Ratings section. 2 Changed Driving Capacitive Loads section. 10

MAY 2011 - REV.A to REV.A.1

Changed Package nameAll

Changes from Original (NOVEMBER 2006) to REV.A

Changed from product preview to production dataAll
--

SOT-23-5

Symbol	-	nsions meters	Dimer In In	nsions ches	
	MIN	MAX	MIN	MAX	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950	BSC	0.037 BSC		
e1	1.900	BSC	0.075 BSC		
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

SOT-23-6

Symbol	-	nsions meters	Dimer In In		
	MIN	MAX	MIN	MAX	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
с	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950) BSC	0.037 BSC		
e1	1.900	BSC	0.075	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

MSOP-8

Symbol		Dimensions In Millimeters		nsions ches
	MIN	MAX	MIN	MAX
A	0.820	1.100	0.032	0.043
A1	0.020	0.150	0.001	0.006
A2	0.750	0.950	0.030	0.037
b	0.250	0.380	0.010	0.015
С	0.090	0.230	0.004	0.009
D	2.900	3.100	0.114	0.122
E	2.900	3.100	0.114	0.122
E1	4.750	5.050	0.187	0.199
е	0.650	BSC	0.026 BSC	
L	0.400	0.800	0.016	0.031
θ	0°	6°	0°	6°

SOIC-8

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-5	7″	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3
SOT-23-6	7"	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3
MSOP-8	13″	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1
SOIC-8	13″	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1

KEY PARAMETER LIST OF TAPE AND REEL

DD0002

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18
13″	386	280	370	5

KEY PARAMETER LIST OF CARTON BOX