SN74AUP1G125 Low-Power Single Bus Buffer Gate With 3-State Output

1 Features

- Available in the Texas Instruments NanoStar™ Package
- Low Static-Power Consumption (I_{CC} = 0.9 μA Maximum)
- Low Dynamic-Power Consumption (C_{pd} = 4 pF Typical at 3.3 V)
- Low Input Capacitance (C_I = 1.5 pF Typical)
- Low Noise Overshoot and Undershoot
 < 10% of V_{CC}
- Input-Disable Feature Allows Floating Input Conditions
- I_{off} Supports Partial-Power-Down Mode Operation
- Input Hysteresis Allows Slow Input Transition and Better Switching Noise Immunity at Input
- 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- t_{pd} = 4.6 ns Maximum at 3.3 V

2 Applications

- Audio Dock: Portable
- BluRay™ Players and Home Theaters
- Personal Digital Assistant (PDA)
- Power: Telecom/Server AC/DC Supply: Single Controller: Analog and Digital
- Solid-State Drive (SSD): Client and Enterprise
- TV: LCD/Digital and High-Definition (HDTV)
- · Tablet: Enterprise
- Wireless Headsets, Keyboards, and Mice

3 Description

The SN74AUP1G125 bus buffer gate is a single line driver with a 3-state output. The output is disabled when the output-enable (OE) input is high. This device has the input-disable feature, which allows floating input signals.


To ensure the high-impedance state during power up or power down, OE must be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
SN74AUP1G125DBV	SOT-23 (5)	2.90 mm x 1.60 mm		
SN74AUP1G125DCK	SC70 (5)	2.00 mm x 1.25 mm		
SN74AUP1G125DRL	SOT (5)	1.60 mm x 1.20 mm		
SN74AUP1G125DRY	CON (C)	1.45 mm × 1.00 mm		
SN74AUP1G125DSF	SON (6)	1.00 mm × 1.00 mm		
SN74AUP1G125YFP	DSBGA (6)	0.76 mm × 1.16 mm		
SN74AUP1G125YZP	DSBGA (5)	0.89 mm x 1.39 mm		
SN74AUP1G125YZT	DSBGA (5)	0.89 mm x 1.39 mm		
SN74AUP1G125DPW	X2SON (5)	0.80 mm × 0.80 mm		

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

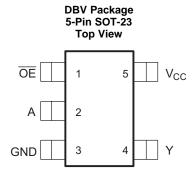
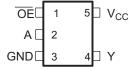
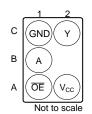
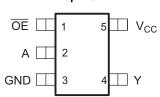

Changes from Revision K (November 2012) to Revision L

Table of Contents


1	Features	1		8.1 Overview	15
2	Applications	1		8.2 Functional Block Diagram	15
3	Description			8.3 Feature Description	15
4	Revision History			8.4 Device Functional Modes	16
5	Pin Configuration and Functions		9	Application and Implementation	17
6	Specifications			9.1 Application Information	17
U	6.1 Absolute Maximum Ratings			9.2 Typical Application	17
	6.2 ESD Ratings		10	Power Supply Recommendations	18
	6.3 Recommended Operating Conditions		11	Layout	18
	6.4 Thermal Information			11.1 Layout Guidelines	18
	6.5 Electrical Characteristics, T _A = 25°C			11.2 Layout Example	18
	6.6 Electrical Characteristics, T _A = -40°C to +85°C		12	Device and Documentation Support	20
	6.7 Switching Characteristics, C ₁ = 5 pF			12.1 Documentation Support	20
	6.8 Switching Characteristics, $C_L = 10 \text{ pF} \dots$			12.2 Receiving Notification of Documentation Update	es 20
	6.9 Switching Characteristics, C _L = 15 pF			12.3 Community Resources	20
	6.10 Switching Characteristics, C _L = 30 pF			12.4 Trademarks	20
	6.11 Operating Characteristics			12.5 Electrostatic Discharge Caution	20
	6.12 Typical Characteristics			12.6 Glossary	20
7	Parameter Measurement Information		13	Mechanical, Packaging, and Orderable	
8	Detailed Description	15		Information	20
	Revision History E: Page numbers for previous revisions may diffe	r from pag	je numb	ers in the current version.	
IOTI			je numb		Page
han	E: Page numbers for previous revisions may diffe	ision N			
iOTi han A D	E: Page numbers for previous revisions may diffe rges from Revision M (December 2015) to Rev dded DPW (X2SON) package	rision N	 ng, and	Orderable Information section at the end of the	1
han A D	E: Page numbers for previous revisions may diffe ges from Revision M (December 2015) to Rev	rision N 	ng, and	Orderable Information section at the end of the	1
han A D d:	E: Page numbers for previous revisions may differ the region of the revision o	rision N	ng, and	Orderable Information section at the end of the	1
han A D d: C	E: Page numbers for previous revisions may differ ages from Revision M (December 2015) to Revided DPW (X2SON) package	I, Packagir	ng, and	Orderable Information section at the end of the or DSBGA packages in Pin Functions table	1
A D d: C A	E: Page numbers for previous revisions may differ ages from Revision M (December 2015) to Revided DPW (X2SON) package	I, Packagir	ng, and	Orderable Information section at the end of the or DSBGA packages in Pin Functions table	1
C A	E: Page numbers for previous revisions may differ ages from Revision M (December 2015) to Revided DPW (X2SON) package	I, Packagir atic parated co	olumns for dard CM	Orderable Information section at the end of the or DSBGA packages in Pin Functions table C standards	1 1 3 5
Ehan A D d C A C A (//	E: Page numbers for previous revisions may differ ages from Revision M (December 2015) to Revided DPW (X2SON) package	I, Packagir atic parated co	olumns for	Orderable Information section at the end of the or DSBGA packages in Pin Functions table C standards	1 1 3 5
A C A (// A	E: Page numbers for previous revisions may differ ages from Revision M (December 2015) to Revided DPW (X2SON) package	Atic	olumns for dard CM	Orderable Information section at the end of the or DSBGA packages in Pin Functions table	1 3 5 15
A C A (// A	E: Page numbers for previous revisions may differ ages from Revision M (December 2015) to Revided DPW (X2SON) package	Atic	olumns for dard CM	Orderable Information section at the end of the or DSBGA packages in Pin Functions table	1 3 5 15
A D d C A C A (// A A	E: Page numbers for previous revisions may differ ages from Revision M (December 2015) to Revided DPW (X2SON) package	l, Packagir parated co o align with puts, Stand	olumns for dard CM	Orderable Information section at the end of the or DSBGA packages in Pin Functions table C standards IOS Inputs, Clamp Diodes, Partial Power Down	1 3 5 15
C A (// A A C C A A A C C A A A C C A A A A C C A A A A C C A A A A C C A A A A C C A A A A C C A A A A C C A	eleted Device Comparison table, see Mechanical ata sheet	rision N I, Packagir atic parated co o align with puts, Stand odates sect sion M ole, Pin Co section, Fe	olumns for dard CM configurate eature Emmends	Orderable Information section at the end of	1 3 5 15 18 20

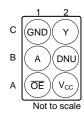
Page


5 Pin Configuration and Functions


DRL Package 5-Pin SOT Top View

YZP or YZT Package 5-Pin DSBGA Bottom View

DCK Package 5-Pin SC70 Top View


DSF Package 6-Pin SON Top View

DRY Package 6-Pin SON Top View

YFP Package 6-Pin DSBGA Bottom View

DPW Package 5-Pin X2SON Top View

Pin Functions

		PIN				
NAME	SOT-23 (DBV), SC70 (DCK), SOT (DRL), X2SON (DPW)	SON (DRY or DSF)	DSBGA (YZP or YZT)	DSBGA (YFP)	I/O	DESCRIPTION
Α	2	2	B1	B1	I	Input
DNU	_	_	_	B2	_	Do not use
GND	3	3	C1	C1	_	Ground
N.C.	_	5	_	_	_	No connection
ŌĒ	1	1	A1	A1	I	Output enable (active low)
V _{CC}	5	6	A2	A2	_	Positive supply
Υ	4	4	C2	C2	0	Output

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	4.6	V
VI	Input voltage ⁽²⁾		-0.5	4.6	V
Vo	Voltage applied to any output in the high-impedance or power-off stat	e ⁽²⁾	-0.5	4.6	٧
Vo	Output voltage in the high or low state ⁽²⁾	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±20	mA
	Continuous current through V _{CC} or GND			±50	mA
T_{J}	Junction temperature		150	°C	
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
\/	Liconostatio	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	2000	\/
V _{(ES}	^{D)} discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

See (1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		0.8	3.6	V
		V _{CC} = 0.8 V	V _{CC}	3.6	
.,	High level in a trade of	V _{CC} = 1.1 V to 1.95 V	0.65 × V _{CC}	3.6	V
V_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.6	3.6	V
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	2	3.6	
		V _{CC} = 0.8 V		0	
.,	Lauran ianut valta sa	V _{CC} = 1.1 V to 1.95 V	0	0.35 × V _{CC}	V
V_{IL}	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V	0	0.7	V
		V _{CC} = 3 V to 3.6 V	0	0.9	
\/	Output valtage	Active state	0	V _{CC}	V
Vo	Output voltage	3-state	0	3.6	V
		V _{CC} = 0.8 V		-20	μΑ
		V _{CC} = 1.1 V		-1.1	
	High level cutout coment	V _{CC} = 1.4 V		-1.7	
I _{OH}	High-level output current	V _{CC} = 1.65 V		-1.9	mA
		V _{CC} = 2.3 V		-3.1	
		V _{CC} = 3 V		-4	
		V _{CC} = 0.8 V		20	μΑ
		V _{CC} = 1.1 V		1.1	
	Lavi laval autout avenant	V _{CC} = 1.4 V		1.7	
l _{OL}	Low-level output current	V _{CC} = 1.65 V		1.9	mA
		V _{CC} = 2.3 V		3.1	
		$V_{CC} = 3 \text{ V}$		4	
Δt/Δν	Input transition rise or fall rate	$V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$		200	ns/V
T _A	Operating free-air temperature		-40	85	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, *Implications of Slow of Floating CMOS Inputs*, SCBA004.

6.4 Thermal Information

					SN	174AUP1G125	;			
THE	THERMAL METRIC ⁽¹⁾		DBV (SOT-23)	DRL (SOT)	DRY (SON)	DSF (SON)	YFP (DSBGA)	YZP (DSBGA)	DPW (X2SON)	UNIT
			5 PINS	5 PINS	6 PINS	6 PINS	6 PINS	5 PINS	5 PINS	
$R_{\theta JA}$	Junction-to- ambient thermal resistance	303.6	230.5	295.1	342.1	377.1	125.4	146.2	504.3	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	203.8	172.7	131.0	233.1	187.7	1.9	1.4	234.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	100.9	62.2	143.9	206.7	236.6	37.2	39.3	370.3	°C/W
ΨθJt	Junction-to-top characterization parameter	76.1	49.3	14.7	63.4	29.0	0.5	0.7	44.5	°C/W
ΨθЈВ	Junction-to-board characterization parameter	99.3	61.6	144.4	206.7	236.3	37.5	39.8	369.7	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	N/A	N/A	N/A	165.2	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics, T_A = 25°C

PARAMETE	R TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT			
	I _{OH} = -20 μA	0.8 V to 3.6 V	V _{CC} - 0.1						
	$I_{OH} = -1.1 \text{ mA}$	1.1 V	0.75 × V _{CC}						
	$I_{OH} = -1.7 \text{ mA}$	1.4 V	1.11						
.,	$I_{OH} = -1.9 \text{ mA}$	1.65 V	1.32			V			
V_{OH}	$I_{OH} = -2.3 \text{ mA}$	221/	2.05			V			
	$I_{OH} = -3.1 \text{ mA}$	2.3 V	1.9						
	$I_{OH} = -2.7 \text{ mA}$	2.1/	2.72						
	$I_{OH} = -4 \text{ mA}$	3 V	2.6						
	I _{OL} = 20 μA	0.8 V to 3.6 V			0.1				
	I _{OL} = 1.1 mA	1.1 V			0.3 × V _{CC}				
	I _{OL} = 1.7 mA	1.4 V			0.31				
. ,	I _{OL} = 1.9 mA	1.65 V			0.31				
V _{OL}	I _{OL} = 2.3 mA	2.2.1/			0.31	V			
	I _{OL} = 3.1 mA	2.3 V			0.44				
	I _{OL} = 2.7 mA	0.1/			0.31				
	I _{OL} = 4 mA	3 V			0.44				
A or C input	\overline{E} $V_I = GND \; to \; 3.6 \; V$	0 V to 3.6 V			0.1	μΑ			
l _{off}	V_I or $V_O = 0$ V to 3.6 V	0 V			0.2	μA			
$\Delta I_{ m off}$	V_I or $V_O = 0$ V to 3.6 V	0 V to 0.2 V			0.2	μA			
OZ	$V_O = V_{CC}$ or GND	3.6 V			0.1	μΑ			
lcc	$\frac{V_L}{OE}$ = GND or (V _{CC} to 3.6 V), $\frac{V_C}{OE}$ = GND, I _O = 0	0.8 V to 3.6 V			0.5	μΑ			
A inpu	$V_{I} = V_{CC} - 0.6 V^{(1)},$	0.01/			40				
∆I _{CC} OE inp		3.3 V			110	μA			
All inp	uts $\frac{V_I = GND \text{ to } 3.6 \text{ V},}{OE = V_{CC}}$	0.8 V to 3.6 V			0	μπ			
-	V V OND	0 V		1.5		_			
C _I	$V_I = V_{CC}$ or GND	3.6 V		1.5		pF			
C _o	V _O = V _{CC} or GND	3.6 V		3		pF			

 $[\]begin{array}{ll} \hbox{(1)} & \hbox{One input at $V_{CC}-0.6$ V, other input at V_{CC} or GND} \\ \hbox{(2)} & \hbox{To show I_{CC} is very low when the input-disable feature is enabled} \end{array}$

6.6 Electrical Characteristics, $T_A = -40^{\circ}C$ to +85°C

PAF	RAMETER	TEST CONDITIONS	V _{CC}	MIN	TYP	MAX	UNIT	
		$I_{OH} = -20 \mu A$	0.8 V to 3.6 V	V _{CC} - 0.1				
		$I_{OH} = -1.1 \text{ mA}$	1.1 V	$0.7 \times V_{CC}$				
		$I_{OH} = -1.7 \text{ mA}$	1.4 V	1.03				
		$I_{OH} = -1.9 \text{ mA}$	1.65 V	1.3			V	
V _{OH}		$I_{OH} = -2.3 \text{ mA}$	2.3 V	1.97			V	
		$I_{OH} = -3.1 \text{ mA}$	2.3 V	1.85				
	$I_{OH} = -2.7 \text{ mA}$	3 V	2.67					
		$I_{OH} = -4 \text{ mA}$	3 V	2.55				
		I _{OL} = 20 μA	0.8 V to 3.6 V			0.1		
		I _{OL} = 1.1 mA	1.1 V		0.3 × V _C			
		I _{OL} = 1.7 mA	1.4 V			0.37		
\		I _{OL} = 1.9 mA	1.65 V		V			
V_{OL}		I _{OL} = 2.3 mA	221/			0.33	V	
		I _{OL} = 3.1 mA	2.3 V			0.45		
		I _{OL} = 2.7 mA	2.1/			0.33		
		I _{OL} = 4 mA	3 V			0.45		
I _I	A or OE input	V _I = GND to 3.6 V	0 V to 3.6 V			0.5	μΑ	
I _{off}		V_I or $V_O = 0$ V to 3.6 V	0 V			0.6	μΑ	
$\Delta I_{\rm off}$		V_I or $V_O = 0 V$ to 3.6 V	0 V to 0.2 V			0.6	μA	
loz		$V_O = V_{CC}$ or GND	3.6 V			0.5	μΑ	
Icc		$\frac{V_{l}}{OE}$ = GND or (V _{CC} to 3.6 V), $\frac{V_{l}}{OE}$ = GND, I _O = 0	0.8 V to 3.6 V			0.9	μΑ	
	A input	$V_{I} = V_{CC} - 0.6 V^{(1)},$	0.01/			50		
ΔI_{CC}	OE input	I _O = 0	3.3 V		120	μA		
71CC	All inputs	$\frac{V_I}{OE} = \text{GND to } 3.6 \text{ V},$	0.8 V to 3.6 V			0	μΛ	

⁽¹⁾ One input at V_{CC} – 0.6 V, other input at V_{CC} or GND (2) To show I_{CC} is very low when the input-disable feature is enabled

6.7 Switching Characteristics, $C_L = 5 pF$

over recommended operating free-air temperature range, $C_L = 5 \text{ pF}$ (unless otherwise noted) (see Figure 2 and Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	T _A	MIN	TYP	MAX	UNIT
			0.8 V	T _A = 25°C		18.1		
			1.2 V ± 0.1 V	T _A = 25°C	4.3	7.4	12.6	
			1.2 V ± 0.1 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.7		15.3	
			4511.0411	T _A = 25°C	3.3	5.2	8.5	
		Y	1.5 V ± 0.1 V	$T_A = -40$ °C to +85°C	1		10.2	
pd	Α		1.8 V ± 0.15 V	T _A = 25°C	2.6	4.1	6.8	ns
				$T_A = -40$ °C to +85°C	1.3		8.3	
			2511.021	T _A = 25°C	2	2.9	4.7	
			2.5 V ± 0.2 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.1		5.8	
			3.3 V ± 0.3 V	T _A = 25°C	1.7	2.4	3.8	
				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1		4.6	
			0.8 V	T _A = 25°C		19.1		
			1.2 V ± 0.1 V	T _A = 25°C	5.1	9.3	15.9	ns
		Y	1.2 V ± 0.1 V	$T_A = -40$ °C to +85°C	3.6		19.2	
			1.5 V ± 0.1 V	T _A = 25°C	4.1	6.6	10.5	
				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.5		12.7	
en	ŌĒ		1.8 V ± 0.15 V	T _A = 25°C	3.2	5.3	8.7	
				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.1		10.3	
			2.5 V ± 0.2 V	T _A = 25°C	2.5	3.8	6	
				$T_A = -40$ °C to +85°C	1.6		7.2	
			0.01/ 0.01/	T _A = 25°C	2.1	3.2	4.9	
			3.3 V ± 0.3 V	$T_A = -40$ °C to +85°C	1.4		5.9	
			0.8 V	T _A = 25°C		12.1		
			1.2 V ± 0.1 V	T _A = 25°C	2.4	4.1	6.9	
			1.2 V ± 0.1 V	$T_A = -40$ °C to +85°C	2.2		7.7	
			1.5 V ± 0.1 V	$T_A = 25^{\circ}C$	1.8	2.9	4.5	
			1.5 V ± 0.1 V	$T_A = -40$ °C to +85°C	1.7		5.1	
dis	ŌĒ	Y	1.8 V ± 0.15 V	T _A = 25°C	1	2.9	4.3	ns
			1.0 V ± U.13 V	$T_A = -40$ °C to +85°C	1.5		4.7	
			25 1/ + 0.2 1/	T _A = 25°C	1	1.8	2.7	
			2.5 V ± 0.2 V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1		3.3	
			227.027	T _A = 25°C	1.2	2.2	3.2	
			$3.3 \text{ V} \pm 0.3 \text{ V}$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.1		4	

6.8 Switching Characteristics, $C_L = 10 pF$

over recommended operating free-air temperature range, $C_L = 10 \text{ pF}$ (unless otherwise noted) (see Figure 2 and Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	T _A	MIN	TYP	MAX	UNIT
			0.8 V	T _A = 25°C		20.5		
			4.0.1/ 0.4.1/	T _A = 25°C	4.6	8.4	13.7	
			1.2 V ± 0.1 V	$T_A = -40$ °C to +85°C	3.6		16.6	
			451/ 041/	T _A = 25°C	3.5	5.9	9.3	
		Y	1.5 V ± 0.1 V	$T_A = -40$ °C to +85°C	2.4		11.1	
pd	A or B		4.0.1/045.1/	T _A = 25°C	3.9	4.7	7.5	ns
			1.8 V ± 0.15 V	$T_A = -40$ °C to +85°C	1.3		9.1	
			25V+02V	T _A = 25°C	2.3	3.4	5.3	
			2.5 V ± 0.2 V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.6		6.4	
			227.027	T _A = 25°C	2.1	2.8	4.3	
			3.3 V ± 0.3 V	$T_A = -40$ °C to +85°C	1.4		5.2	
		Y	0.8 V	T _A = 25°C		21.8		
			4.0.1/ . 0.4.1/	T _A = 25°C	4.9	10.2	16.8	
			1.2 V ± 0.1 V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	4.4		20.2	ns
			1.5 V ± 0.1 V	T _A = 25°C	3.9	7.3	11.2	
	ŌĒ			$T_A = -40$ °C to +85°C	3.3		13.5	
en			1.8 V ± 0.15 V	T _A = 25°C	3.4	5.8	9.2	
				$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	2.7		11	
			2.5 V ± 0.2 V	T _A = 25°C	2.5	4.3	6.4	
				$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	2.1		7.8	
			0.01/ 0.01/	T _A = 25°C	2.1	3.7	5.4	
			3.3 V ± 0.3 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.9		6.4	
			0.8 V	T _A = 25°C		13		
			4.2.1/ . 0.4.1/	$T_A = 25^{\circ}C$	3.8	6.6	11.7	
			1.2 V ± 0.1 V	$T_A = -40$ °C to +85°C	1.2		14	
			457.047	T _A = 25°C	2.2	4.7	7.9	
			1.5 V ± 0.1 V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.3		9.3	
dis	ŌĒ	Υ	4.0.1/ - 0.45.1/	T _A = 25°C	2.4	4.4	6.4	ns
			1.8 V ± 0.15 V	$T_A = -40$ °C to +85°C	2.2		7.5	-
			2.5 V ± 0.2 V	T _A = 25°C	1.3	3.1	4.9	
				$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.2		5.4	
			227.027	T _A = 25°C	1.9	3.4	5	
			3.3 V ± 0.3 V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	1.9		5.6	

6.9 Switching Characteristics, $C_L = 15 pF$

over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 2 and Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	T _A	MIN	TYP	MAX	UNIT
			0.8 V	T _A = 25°C		22.5		
			400/ 040/	T _A = 25°C	5.8	9.3	15.1	
			1.2 V ± 0.1 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.3		17.9	
			4.5.7/ 0.4.7/	T _A = 25°C	4.4	6.6	10.2	
			1.5 V ± 0.1 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	3		12.1	
od	A or B	Y	1.0.1/ . 0.15.1/	T _A = 25°C	3.5	5.3	8.3	ns
			1.8 V ± 0.15 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.3		9.9	
			0.5.1/ 0.0.1/	T _A = 25°C	2.7	3.9	5.8	
			2.5 V ± 0.2 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.9		7	
			221/.021/	T _A = 25°C	2.4	3.2	4.7	
				$T_A = -40$ °C to +85°C	1.8		5.7	
		Y	0.8 V	$T_A = 25^{\circ}C$		25.2		
			1.2 V ± 0.1 V	$T_A = 25^{\circ}C$	7	11.3	18.1	ns
			1.2 V ± 0.1 V	$T_A = -40$ °C to +85°C	5.4		21.4	
			1.5 V ± 0.1 V	$T_A = 25^{\circ}C$	5.5	8.1	12.2	
	ŌĒ			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.1		14.5	
en			1.8 V ± 0.15 V	$T_A = 25^{\circ}C$	4.3	6.5	10.1	
				$T_A = -40$ °C to +85°C	3.3		12	
			2.5 V ± 0.2 V	$T_A = 25^{\circ}C$	3.4	4.8	7.1	
				$T_A = -40$ °C to +85°C	2.6		8.4	
			3.3 V ± 0.3 V	$T_A = 25^{\circ}C$	2.9	4.1	5.9	
			3.5 V ± 0.5 V	$T_A = -40$ °C to +85°C	2.3		6.9	
			0.8 V	$T_A = 25^{\circ}C$		14		
			1.2 V ± 0.1 V	$T_A = 25^{\circ}C$	3.7	5.8	8.2	
			1.2 V ± 0.1 V	$T_A = -40$ °C to +85°C	3.3		11	
			1.5 V ± 0.1 V	$T_A = 25^{\circ}C$	5.5	3.9	5.9	
			1.5 V ± 0.1 V	$T_A = -40$ °C to +85°C	2.1		8	
dis	ŌĒ	Υ	1.8 V ± 0.15 V	$T_A = 25^{\circ}C$	3.3	4.5	6.6	
			1.0 V ± 0.10 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.9		7.4	
			2.5 V ± 0.2 V	$T_A = 25^{\circ}C$	2.3	3.2	4.3	
				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	1.8		5.1	
			3.3 V ± 0.3 V	T _A = 25°C	2.4	4.8	6.2	
			J.J V ± U.J V	$T_A = -40$ °C to +85°C	3.1		6.7	

6.10 Switching Characteristics, $C_L = 30 pF$

over recommended operating free-air temperature range, C_L = 30 pF (unless otherwise noted) (see Figure 2 and Figure 3)

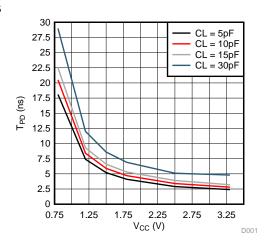
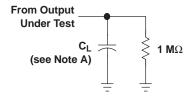
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	T _A	MIN	TYP	MAX	UNIT
			0.8 V	T _A = 25°C		29		
			1.2 V ± 0.1 V	T _A = 25°C	7.4	12	18.7	
			1.2 V ± 0.1 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	6.6		21.4	
			1.5 V ± 0.1 V	T _A = 25°C	5.7	8.6	12.5	
				$T_A = -40$ °C to +85°C	4.9		14.7	
t _{pd}	A or B	Υ	1.8 V ± 0.15 V	T _A = 25°C	4.8	6.9	10.1	ns
			1.6 V ± 0.15 V	$T_A = -40$ °C to +85°C	3.1		12	
			25 / . 02 //	T _A = 25°C	3.9	5.1	7.2	
			2.5 V ± 0.2 V	$T_A = -40$ °C to +85°C	3.3		8.7	
			3.3 V ± 0.3 V	T _A = 25°C	3.5	4.8	6	
			3.3 V ± 0.3 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	3		7	
			0.8 V	T _A = 25°C		33.4		·
		Y	1.2 V ± 0.1 V	T _A = 25°C	8.8	14.1	21.8	ns
				$T_A = -40$ °C to +85°C	7.4		25.5	
			1.5 V ± 0.1 V	T _A = 25°C	6.9	10.1	14.6	
				$T_A = -40$ °C to +85°C	5.6		17.4	
en	ŌĒ		1.8 V ± 0.15 V	T _A = 25°C	5.6	8.1	12	
				$T_A = -40$ °C to +85°C	4.7		14.1	
			2.5 V ± 0.2 V	T _A = 25°C	4.3	6.1	8.5	
				$T_A = -40$ °C to +85°C	3.8		10	
			221/.021/	T _A = 25°C	3.7	5.2	7.1	
			3.3 V ± 0.3 V	$T_A = -40$ °C to +85°C	3.4		8.3	
			0.8 V	T _A = 25°C		17.7		
			121/.011/	T _A = 25°C	5.8	10	16	
			1.2 V ± 0.1 V	$T_A = -40$ °C to +85°C	3.7		16	
			4511.0411	T _A = 25°C	5.7	7.7	10.9	
			1.5 V ± 0.1 V	$T_A = -40$ °C to +85°C	1		10.7	
dis	ŌĒ	Υ	4.0.1/ . 0.45.1/	T _A = 25°C	4.5	7.7	9.8	ns
			1.8 V ± 0.15 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.4		12.5	
			251.021	T _A = 25°C	3.9	5.6	7.4	
			2.5 V ± 0.2 V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	3.2		9	
			227.027	T _A = 25°C	3.3	8.4	10.7	
			3.3 V ± 0.3 V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	6.6		10.8	

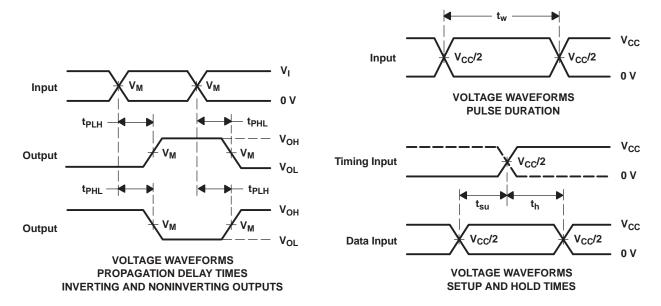
6.11 Operating Characteristics

 $T_A = 25$ °c

	PARAMETER		TEST CONDITIONS	V _{cc}	TYP	UNIT
				3.8		
				1.2 V ± 0.1 V	3.8	
		Outpute enabled	f = 10 MHz	1.5 V ± 0.1 V	3.7	
		Outputs enabled	I = 10 IVID2	1.8 V ± 0.15 V	3.8	
				2.5 V ± 0.2 V	3.9	
<u></u>	Power dissipation capacitance			3.3 V ± 0.3 V	4	
C _{pd}	rower dissipation capacitance			0.8 V	0	pF
				1.2 V ± 0.1 V	0	
		Outpute disabled	f = 10 MHz	1.5 V ± 0.1 V	0	
		Outputs disabled	I = 10 IVID2	1.8 V ± 0.15 V	0	
				2.5 V ± 0.2 V	0	
				3.3 V ± 0.3 V	0	

6.12 Typical Characteristics

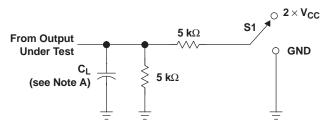




Figure 1. Propagation Delay vs. Supply Voltage and Load Capacitance

7 Parameter Measurement Information

LOAD CIRCUIT

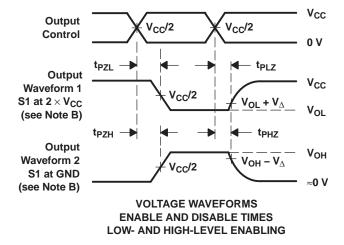
	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	V _{CC} = 3.3 V ± 0.3 V
C _L	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
V _I	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}



NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r/t_f = 3 \text{ ns}$.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd} .
- E. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms


Parameter Measurement Information (continued)

TEST	S 1
t _{PLZ} /t _{PZL} t _{PHZ} /t _{PZH}	2×V _{CC} GND
'PHZ' 'PZH	GND

LOAD CIRCUIT

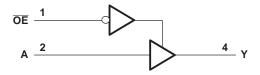
	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V_{CC} = 1.8 V \pm 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	V _{CC} = 3.3 V ± 0.3 V
C _L	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
V _I	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}
V _∆	0.1 V	0.1 V	0.1 V	0.15 V	0.15 V	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r/t_f = 3$ ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms (Enable and Disable Times)

8 Detailed Description


8.1 Overview

The AUP family is TI's premier solution to the industry's low-power needs in battery-powered portable applications. This family of devices is specified for low static and dynamic power consumption across the entire V_{CC} range of 0.8 V to 3.6 V, resulting in an increased battery life. This product also maintains excellent signal integrity (see Figure 2 and Figure 3).

The SN74AUP1G125 device contains one buffer gate device with output enable control and performs the Boolean function Y = A. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs when the device is powered down. This inhibits current backflow into the device, which prevents damage to the device.

To assure the high-impedance state during power up or power down, \overline{OE} must be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Balanced High-Drive CMOS Push-Pull Outputs

A balanced output allows the device to sink and source similar currents. The high drive capability of this device creates fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the power output of the device to be limited to avoid thermal runaway and damage due to over-current. The electrical and thermal limits defined the in the *Absolute Maximum Ratings* table must be followed at all times.

8.3.2 Standard CMOS Inputs

Standard CMOS inputs are high impedance and are typically modelled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics*, $T_A = 25^{\circ}\text{C}$ table. The worst case resistance is calculated with the maximum input voltage, given in the *Absolute Maximum Ratings* table, and the maximum input leakage current, given in the *Electrical Characteristics*, $T_A = 25^{\circ}\text{C}$ table, using ohm's law (R = V ÷ I).

Signals applied to the inputs need to have fast edge rates, as defined by $\Delta t/\Delta v$ in the *Recommended Operating Conditions* table to avoid excessive currents and oscillations. If a slow or noisy input signal is required, a device with a Schmitt-trigger input should be used to condition the input signal prior to the standard CMOS input.

8.3.3 Clamp Diodes

The inputs and outputs to this device have negative clamping diodes.

CAUTION

Voltages beyond the values specified in the *Absolute Maximum Ratings* table can cause damage to the device. The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

Feature Description (continued)

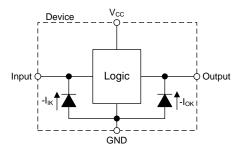


Figure 4. Electrical Placement of Clamping Diodes for Each Input and Output

8.3.4 Partial Power Down (I_{off})

The inputs and outputs for this device enter a high impedance state when the supply voltage is 0 V. The maximum leakage into or out of any input or output pin on the device is specified by I_{off} in the *Electrical Characteristics*, $T_A = 25^{\circ}C$ table.

8.3.5 Over-voltage Tolerant Inputs

Input signals to this device can be driven above the supply voltage so long as they remain below the maximum input voltage value specified in the *Absolute Maximum Ratings* table.

8.4 Device Functional Modes

Table 1 lists the functional modes for SN74AUP1G125.

Table 1. Function Table

INP	OUTPUT	
ŌĒ	A	Y
L	Н	Н
L	L	L
Н	Х	Hi-Z

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74AUP1G125 device is a high-drive CMOS device that is used as a output enabled buffer with a high output drive, such as an LED application. The device can produce 24 mA of drive current at 3.3 V, which is ideal for driving multiple outputs and good for high-speed applications up to 100 MHz. The inputs are 5.5-V tolerant, allowing it to translate down to $V_{\rm CC}$.

9.2 Typical Application

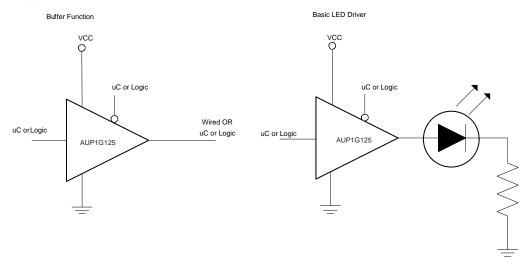


Figure 5. Application Schematic

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive also creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.

9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - Rise time and fall time specs. See $(\Delta t/\Delta V)$ in the *Recommended Operating Conditions* table.
 - Specified high and low levels. See (V_{IH} and V_{IL}) in the Recommended Operating Conditions table.
 - Inputs are overvoltage tolerant allowing them to go as high as (V_I max) in the Recommended Operating
 Conditions table at any valid V_{CC}.
- 2. Recommended Output Conditions
 - Load currents should not exceed (I_O max) per output and should not exceed (Continuous current through V_{CC} or GND) total current for the part. These limits are located in the *Absolute Maximum Ratings* table.
 - Outputs should not be pulled above V_{CC}.

Typical Application (continued)

9.2.3 Application Curve

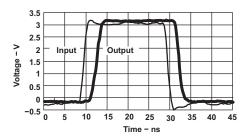


Figure 6. Switching Characteristics at 25 MHz

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions* table.

The VCC pin must have a good bypass capacitor to prevent power disturbance. TI recommends to use a $0.1-\mu F$ capacitor for this device. It is ok to parallel multiple bypass caps to reject different frequencies of noise. $0.1-\mu F$ and $1-\mu F$ capacitors are commonly used in parallel. Install the bypass capacitor as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Figure 7 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent the inputs from floating. The logic level that should be applied to any particular unused input depends on the function of the device. The inputs should be tied to GND or V_{CC} , whichever makes more sense or is more convenient.

Even low data rate digital signals can have high frequency signal components due to fast edge rates. When a printed-circuit board (PCB) trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners. Figure 8 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

11.2 Layout Example

Figure 7. Proper Multi-Gate Input Termination Diagram

Layout Example (continued)

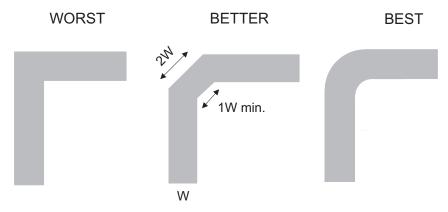


Figure 8. Trace Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following:

Implications of Slow or Floating CMOS Inputs, SCBA004

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

NanoStar, E2E are trademarks of Texas Instruments. BluRay is a trademark of Blu-ray Disc Association (BDA). All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
74AUP1G125DCKRG4	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HM5	Samples
SN74AUP1G125DBVR	ACTIVE	SOT-23	DBV	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	H25R	Samples
SN74AUP1G125DBVT	ACTIVE	SOT-23	DBV	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	H25R	Samples
SN74AUP1G125DCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(HM5, HMF, HMK, HM R)	Samples
SN74AUP1G125DCKT	ACTIVE	SC70	DCK	5	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(HM5, HMR)	Samples
SN74AUP1G125DPWR	ACTIVE	X2SON	DPW	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	B1	Samples
SN74AUP1G125DRLR	ACTIVE	SOT-5X3	DRL	5	4000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	(HM7, HMR)	Samples
SN74AUP1G125DRYR	ACTIVE	SON	DRY	6	5000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	НМ	Samples
SN74AUP1G125DSFR	ACTIVE	SON	DSF	6	5000	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	НМ	Samples
SN74AUP1G125YFPR	ACTIVE	DSBGA	YFP	6	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM		HMN	Samples
SN74AUP1G125YZPR	ACTIVE	DSBGA	YZP	5	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	HMN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

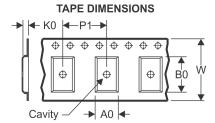
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

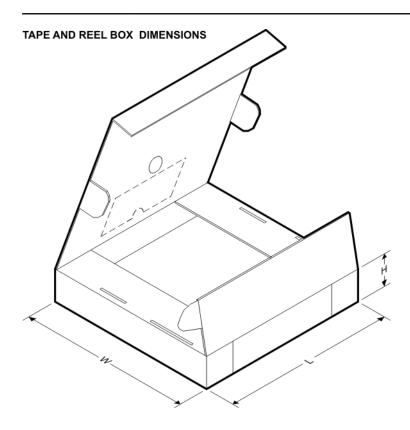
10-Dec-2020


- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

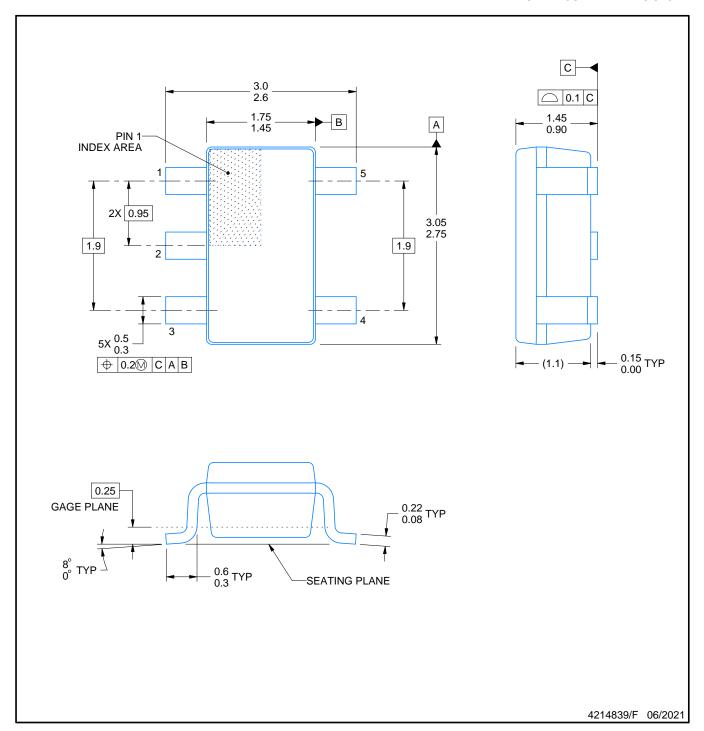
TAPE AND REEL INFORMATION


	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadran
74AUP1G125DCKRG4	SC70	DCK	5	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74AUP1G125DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AUP1G125DBVT	SOT-23	DBV	5	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AUP1G125DCKR	SC70	DCK	5	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74AUP1G125DCKR	SC70	DCK	5	3000	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
SN74AUP1G125DCKT	SC70	DCK	5	250	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74AUP1G125DCKT	SC70	DCK	5	250	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
SN74AUP1G125DPWR	X2SON	DPW	5	3000	178.0	8.4	0.91	0.91	0.5	2.0	8.0	Q3
SN74AUP1G125DRLR	SOT-5X3	DRL	5	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3
SN74AUP1G125DRLR	SOT-5X3	DRL	5	4000	180.0	9.5	1.78	1.78	0.69	4.0	8.0	Q3
SN74AUP1G125DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74AUP1G125DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74AUP1G125DSFR	SON	DSF	6	5000	180.0	8.4	1.16	1.16	0.63	4.0	8.0	Q2
SN74AUP1G125YFPR	DSBGA	YFP	6	3000	178.0	9.2	0.89	1.29	0.62	4.0	8.0	Q1
SN74AUP1G125YZPR	DSBGA	YZP	5	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

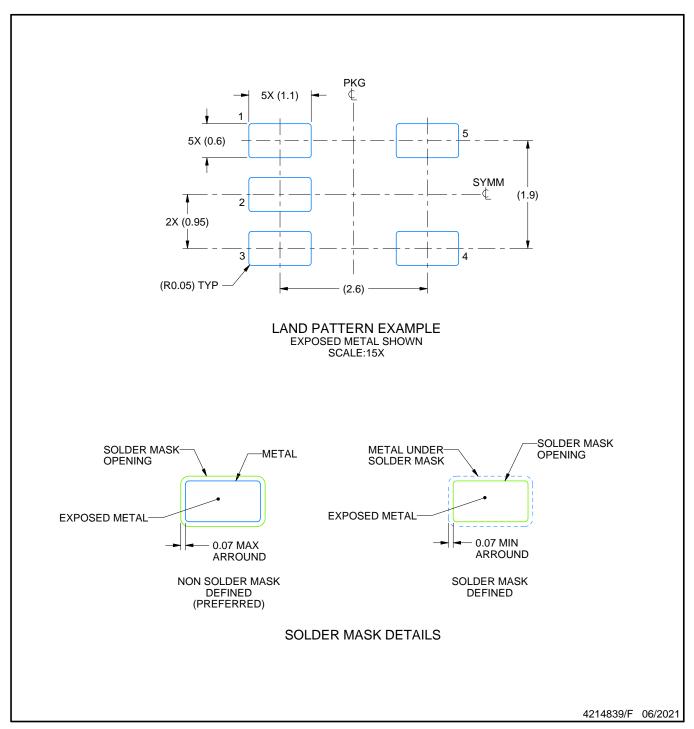


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74AUP1G125DCKRG4	SC70	DCK	5	3000	180.0	180.0	18.0
SN74AUP1G125DBVR	SOT-23	DBV	5	3000	202.0	201.0	28.0
SN74AUP1G125DBVT	SOT-23	DBV	5	250	202.0	201.0	28.0
SN74AUP1G125DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
SN74AUP1G125DCKR	SC70	DCK	5	3000	202.0	201.0	28.0
SN74AUP1G125DCKT	SC70	DCK	5	250	180.0	180.0	18.0
SN74AUP1G125DCKT	SC70	DCK	5	250	202.0	201.0	28.0
SN74AUP1G125DPWR	X2SON	DPW	5	3000	205.0	200.0	33.0
SN74AUP1G125DRLR	SOT-5X3	DRL	5	4000	202.0	201.0	28.0
SN74AUP1G125DRLR	SOT-5X3	DRL	5	4000	184.0	184.0	19.0
SN74AUP1G125DRYR	SON	DRY	6	5000	184.0	184.0	19.0
SN74AUP1G125DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74AUP1G125DSFR	SON	DSF	6	5000	202.0	201.0	28.0
SN74AUP1G125YFPR	DSBGA	YFP	6	3000	220.0	220.0	35.0
SN74AUP1G125YZPR	DSBGA	YZP	5	3000	220.0	220.0	35.0

SMALL OUTLINE TRANSISTOR

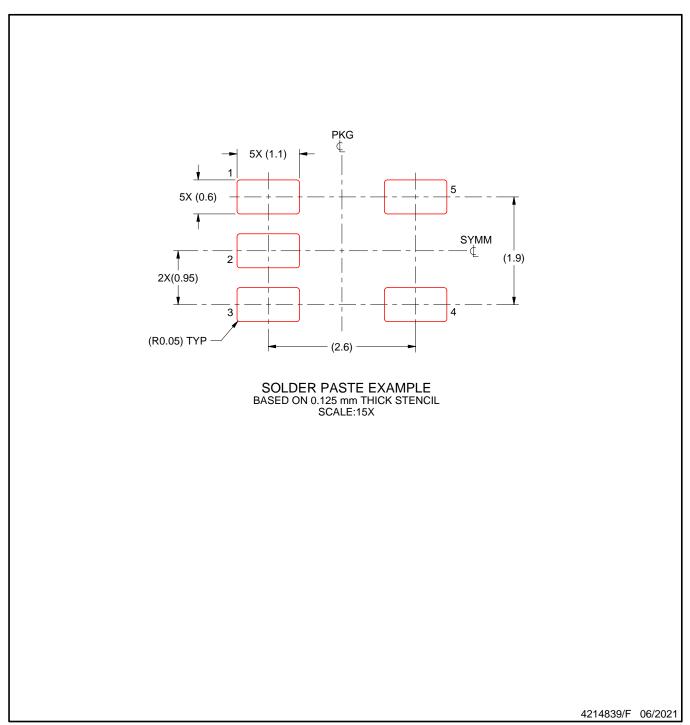
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Reference JEDEC MO-178.

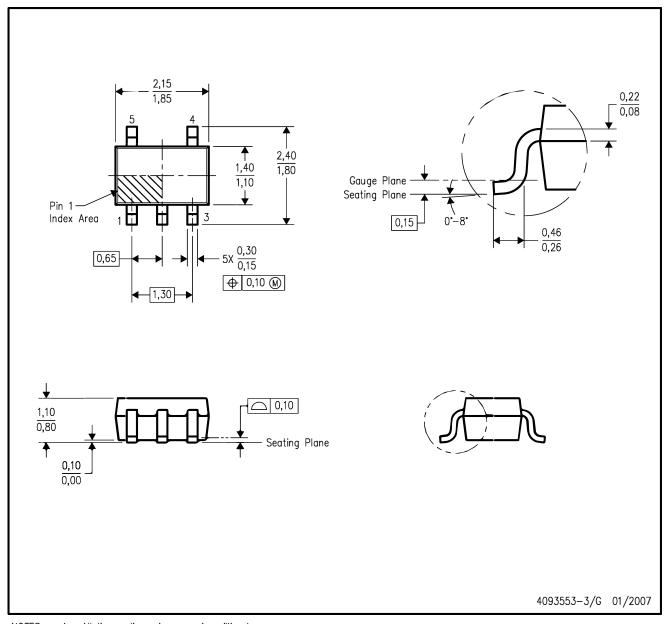
- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.


SMALL OUTLINE TRANSISTOR

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

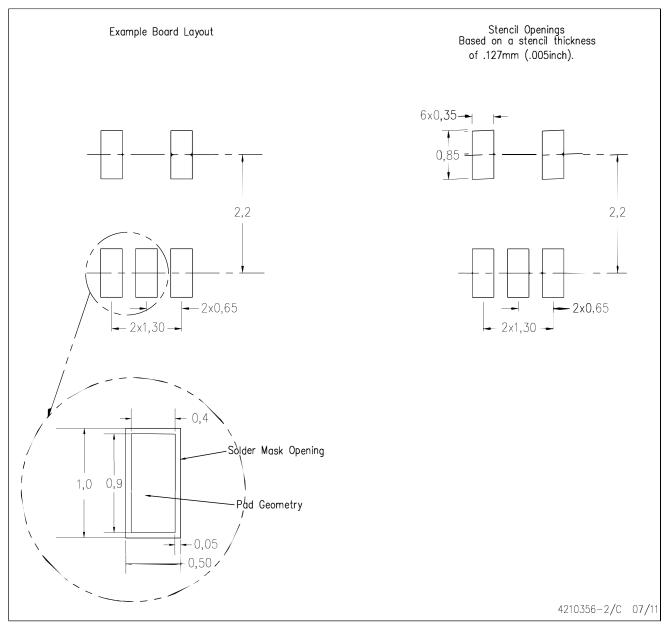

NOTES: (continued)

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{8.} Board assembly site may have different recommendations for stencil design.

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

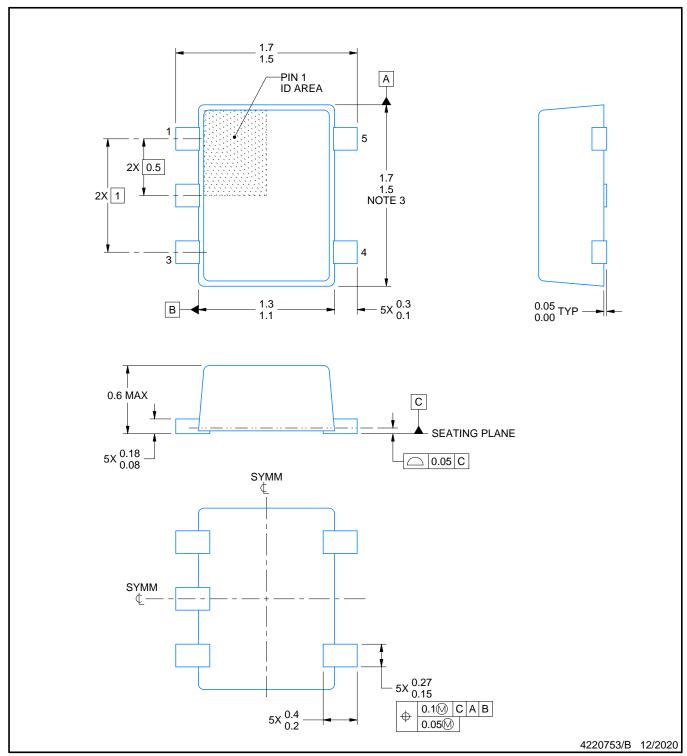


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

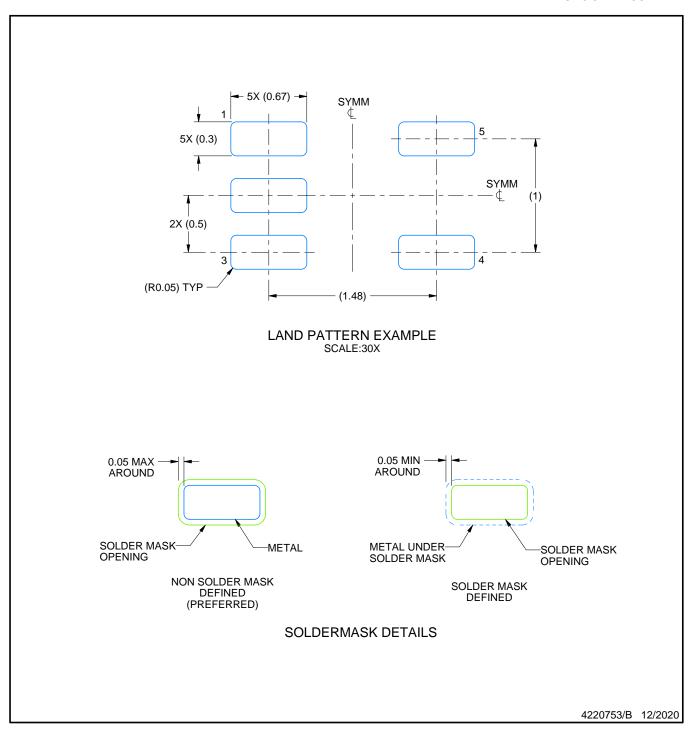
DCK (R-PDSO-G5)

PLASTIC SMALL OUTLINE



NOTES:

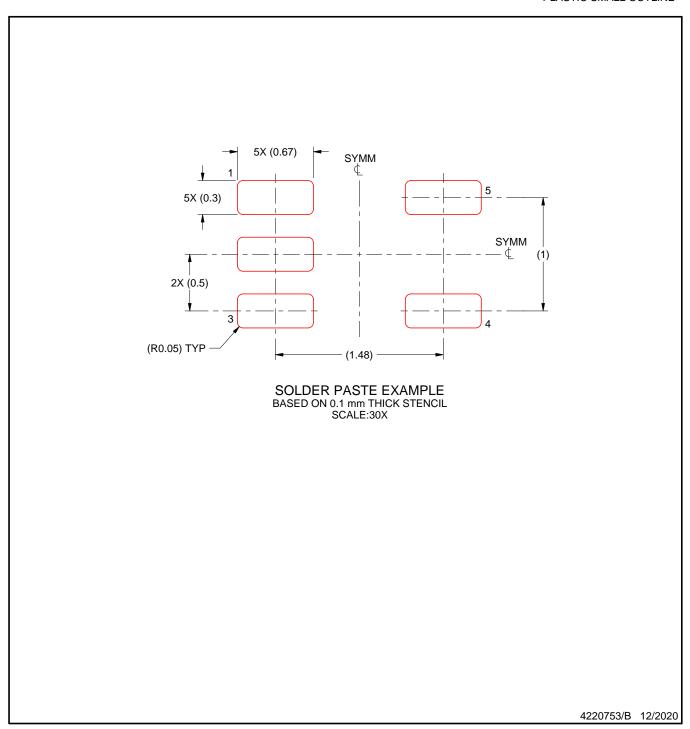
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.


PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-293 Variation UAAD-1

PLASTIC SMALL OUTLINE



NOTES: (continued)

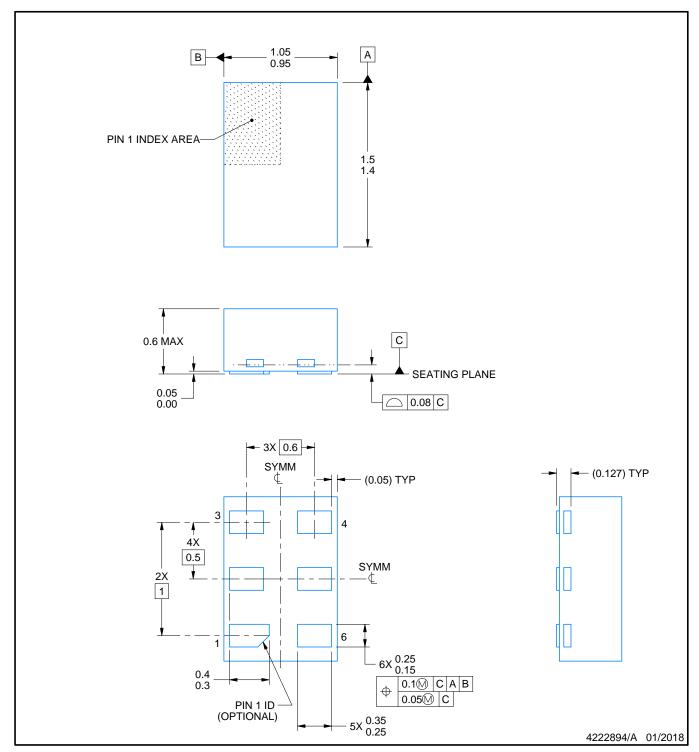
5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PLASTIC SMALL OUTLINE

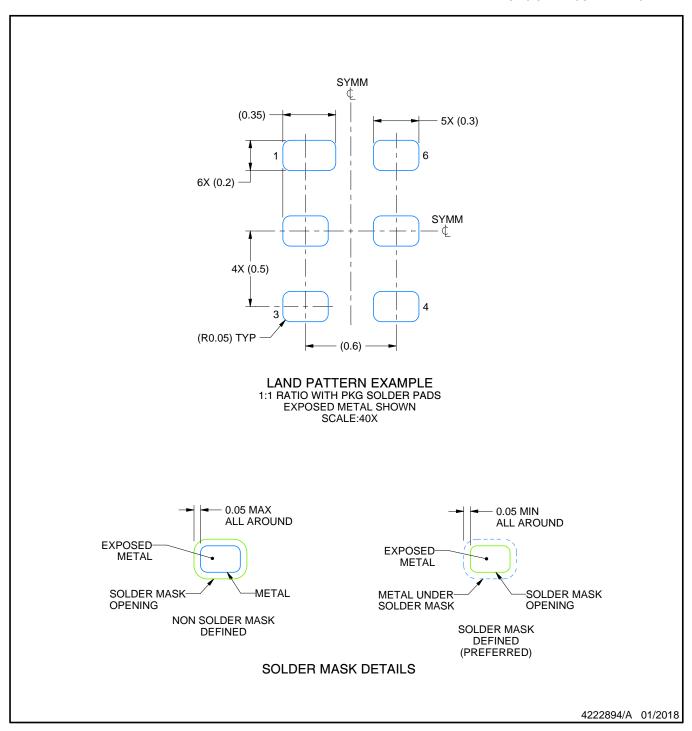
NOTES: (continued)

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


^{8.} Board assembly site may have different recommendations for stencil design.

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

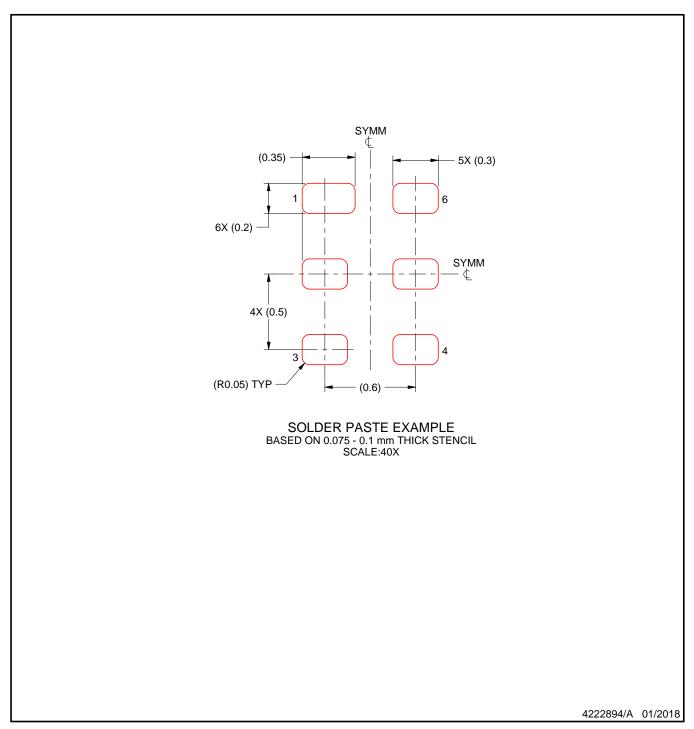
PLASTIC SMALL OUTLINE - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.


PLASTIC SMALL OUTLINE - NO LEAD

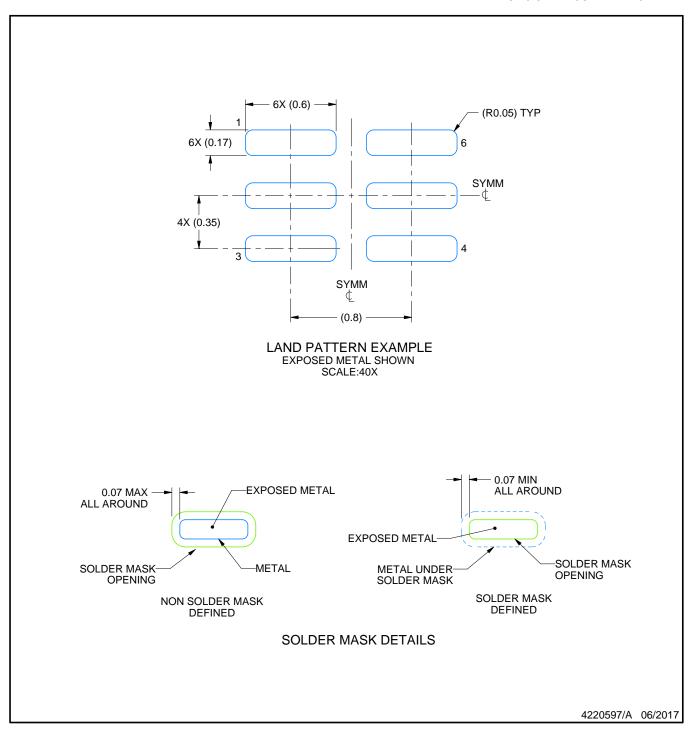
NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).

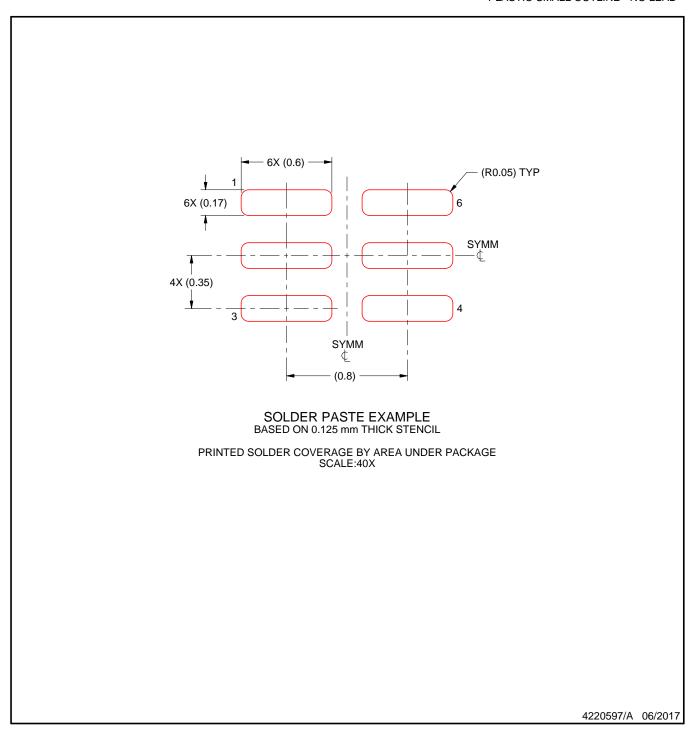
PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.



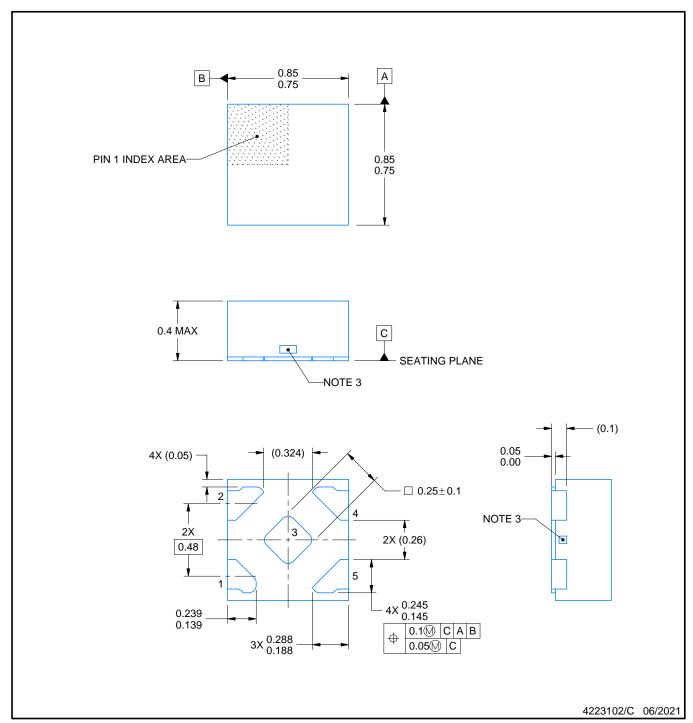
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

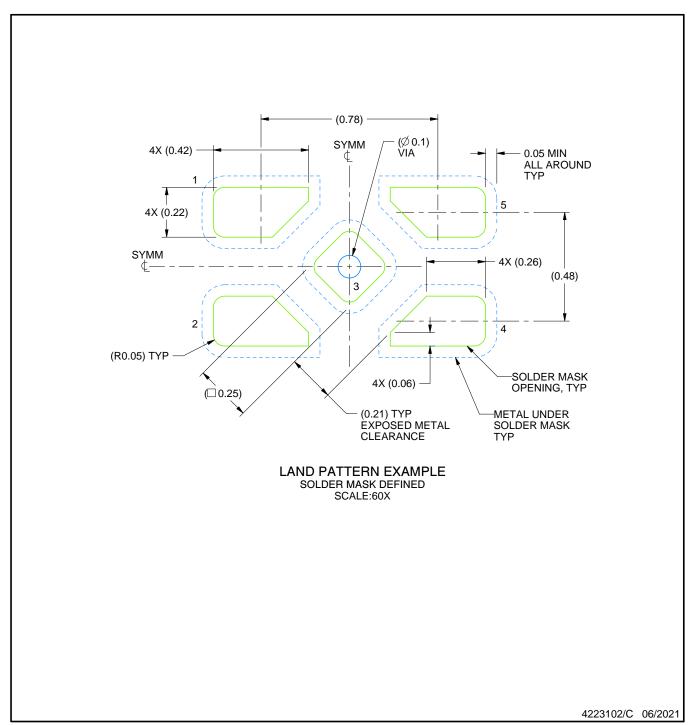
 3. Reference JEDEC registration MO-287, variation X2AAF.

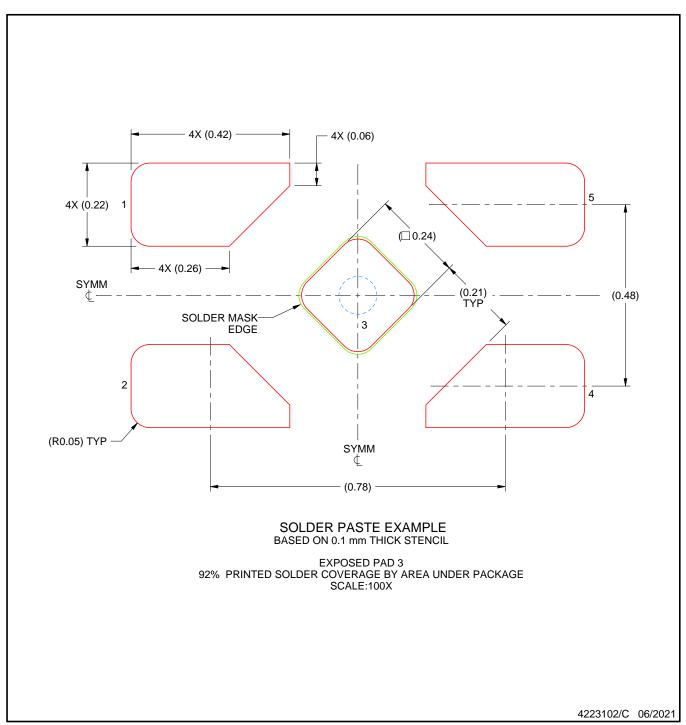
NOTES: (continued)

4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



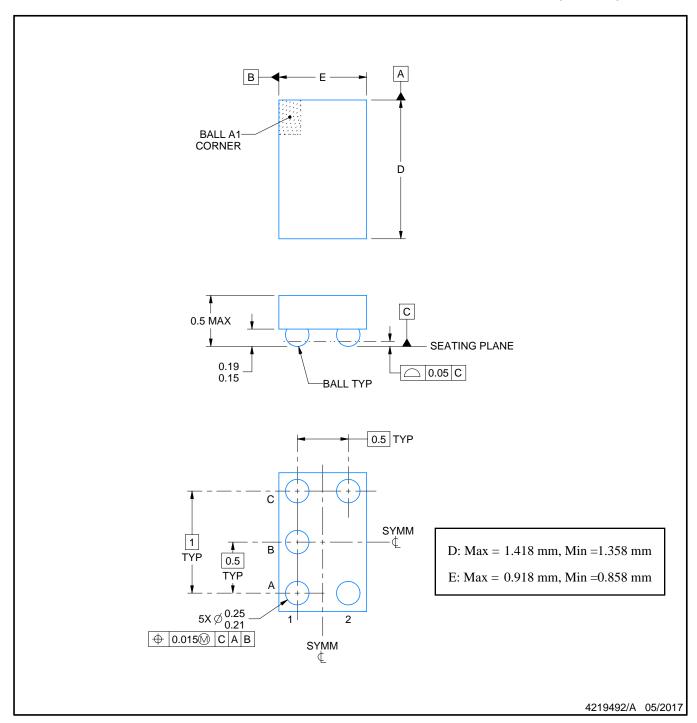
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

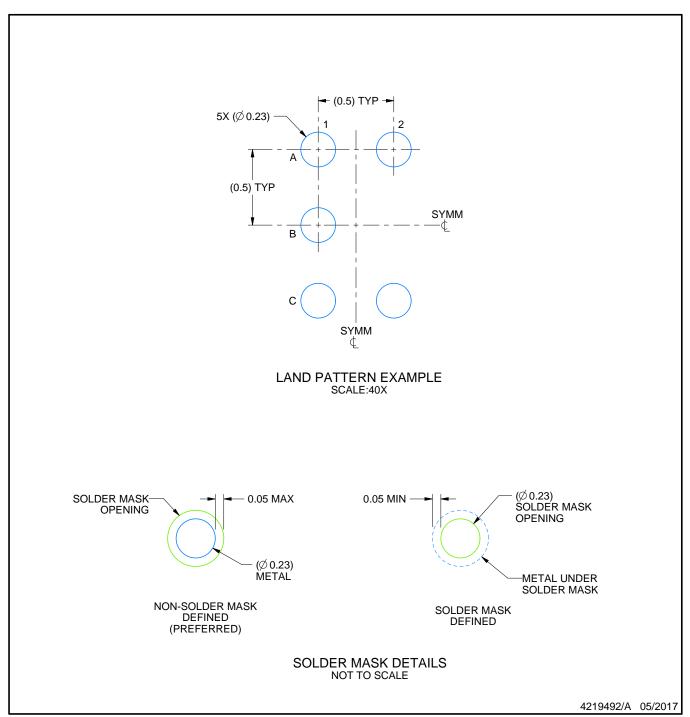

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

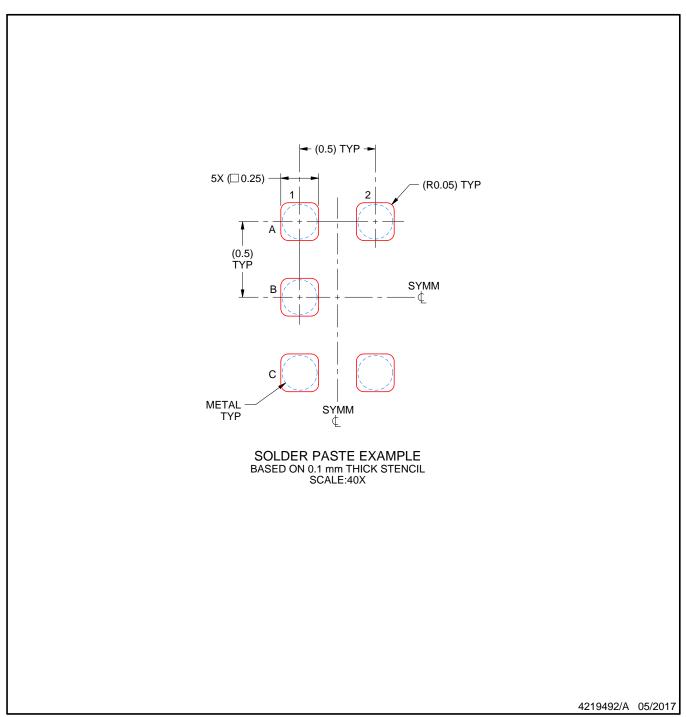
 2. This drawing is subject to change without notice.
- 3. The size and shape of this feature may vary.

NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note in literature No. SLUA271 (www.ti.com/lit/slua271).

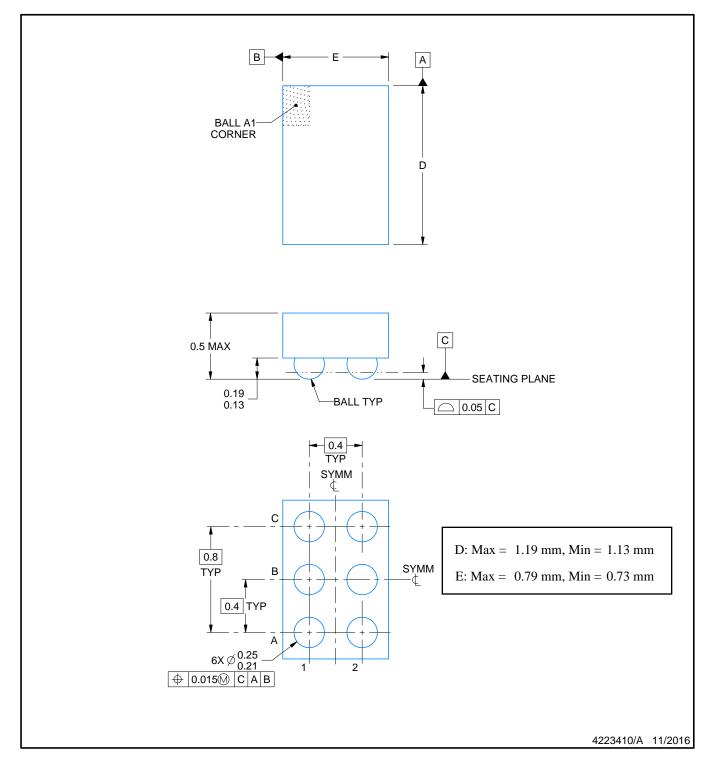
NOTES: (continued)

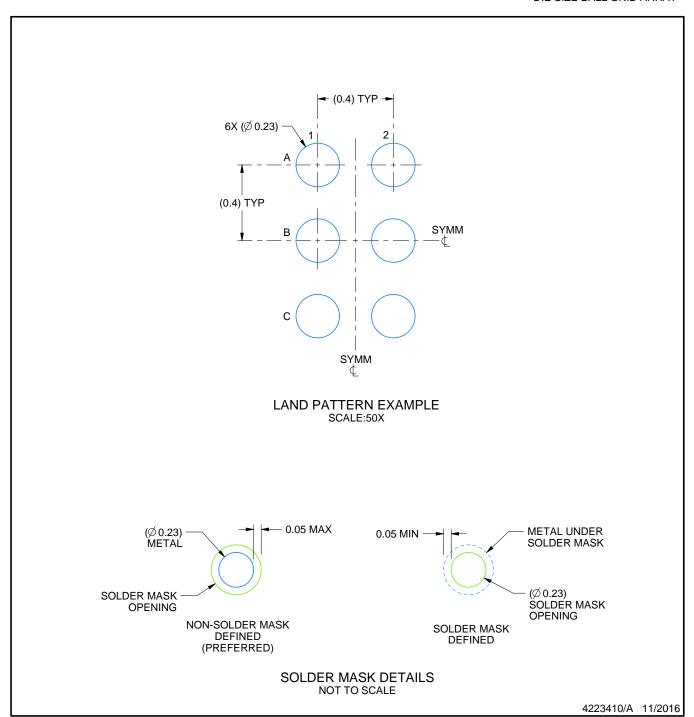

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

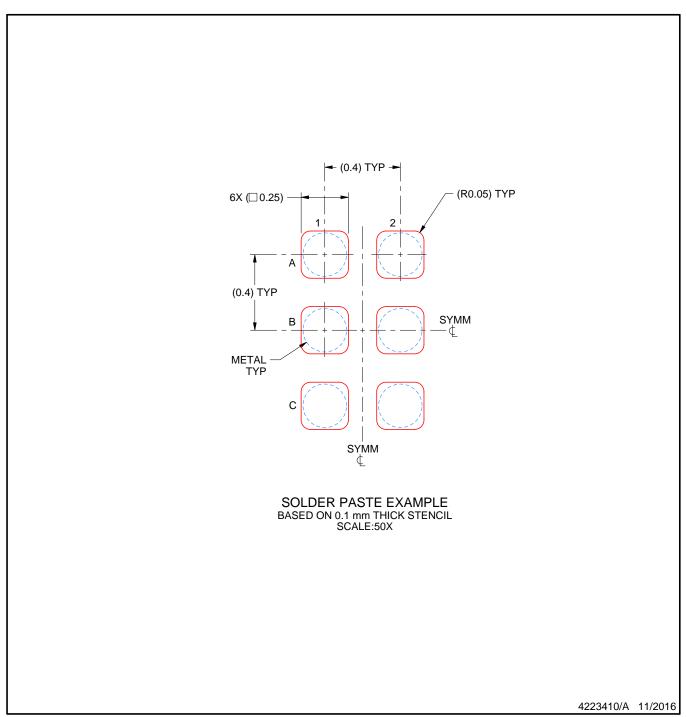
 2. This drawing is subject to change without notice.

NOTES: (continued)


3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.