

SGM51652H4/SGM51652H8 16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

GENERAL DESCRIPTION

The SGM51652H4 and SGM51652H8 are 4-channel and 8-channel, high-precision successive approximation (SAR) analog-to-digital converter (ADC).

These ADCs are powered by a single unipolar 5V, supports true bipolar ±10.24V, ±5.12V, and ±2.56V inputs, as well as unipolar input ranges of 0V to 10.24V and 0V to 5.12V. The input range is configured by software.

These chips provides over-voltage protection at input, it's up to ±20V.

These chips have an on-chip high accuracy and low drift 10ppm reference.

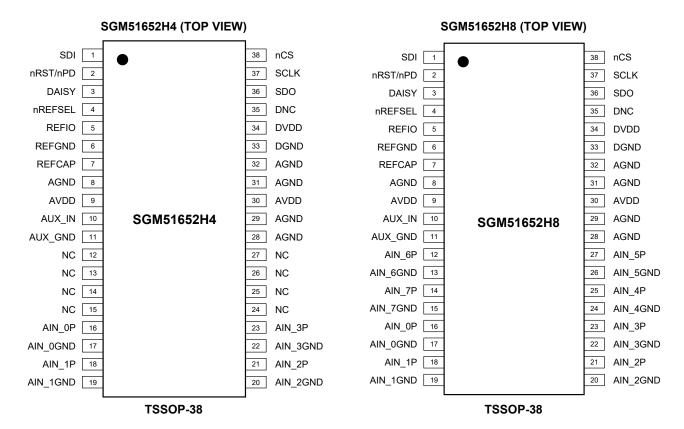
The input impedance of these chips is $\geq 1M\Omega$ and it's dependent of input range selection.

The digital interface is compatible to the traditional SPI protocol.

FEATURES

- 16 Bits ADC
- Programmable Input Ranges:
 - Bipolar Ranges: ±10.24V, ±5.12V, and ±2.56V
 - Unipolar Ranges: 0V to 10.24V and 0V to 5.12V
- Supply Voltage Ranges:
 - Analog Supply: 5V
 - I/O Supply: 1.65V to 5V
- On-Chip Reference: 4.096V
- Differential Nonlinearity (DNL): ±0.65LSB
- Integral Nonlinearity (INL):
 - ±1.1LSB for All Bipolar Ranges
 - ±0.5LSB for All Unipolar Ranges
- Signal-to-Noise Ratio (SNR): 91dB
- Total Harmonic Distortion (THD): -102dB
- Alarm Features
- Daisy-Chain Operation
- -40°C to +125°C Operating Temperature Range
- Available in a Green TSSOP-38 Package

APPLICATIONS


PLC Analog Input Modules Power Automation Factory Automation

Protection Relays

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME		TYPE (1)	FUNCTION				
PIN	SGM51652H4	SGM51652H8	ITPE	FONCTION				
1	SI	IO	DI	Serial Data Input.				
2	nRST/nPD		DI	Dual-Function Pin: Reset/Power-Down the Device. Active low.				
3	DAISY		DI	Chain the Serial Data Input in Daisy-Chain Mode.				
4	nREF	SEL	DI	Active Low. When it's enable, the Internal Reference is on.				
5	REFIO		AIO	Internal Reference Output and External Reference Input Pin.				
6	REF	GND	Р	Reference Ground Pin.				
7	REF(CAP	AO	ADC Reference Decoupling Capacitor Pin.				
8	AG	ND	Р	Analog Ground.				
9	AVDD P Analog Power		Р	Analog Power Supply.				
10	AUX_IN		Al	Positive Auxiliary Input Pin.				
11	AUX_	GND	Al	Negative Auxiliary Input Pin.				

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

PIN DESCRIPTION (continued)

PIN	NA	ME	TYPE (1)	FUNCTION
PIN	SGM51652H4	SGM51652H8	ITPE	FUNCTION
12	NC	AIN_6P	Al	Channel 6 Positive Analog Input.
13	NC	AIN_6GND	Al	Channel 6 Negative Analog Input.
14	NC	AIN_7P	Al	Channel 7 Positive Analog Input.
15	NC	AIN_7GND	Al	Channel 7 Negative Analog Input.
16	AIN	_0P	Al	Channel 0 Positive Analog Input.
17	AIN_0	OGND	Al	Channel 0 Negative Analog Input.
18	AIN	_1P	Al	Channel 1 Positive Analog Input.
19	AIN_	1GND	Al	Channel 1 Negative Analog Input.
20	AIN_2	2GND	Al	Channel 2 Negative Analog Input.
21	AIN	_2P	Al	Channel 2 Positive Analog Input.
22	AIN_3GND		Al	Channel 3 Negative Analog Input.
23	AIN	_3P	Al	Channel 3 Positive Analog Input.
24	NC	AIN_4GND	Al	Channel 4 Negative Analog Input.
25	NC	AIN_4P	Al	Channel 4 Positive Analog Input.
26	NC	AIN_5GND	Al	Channel 5 Negative Analog Input
27	NC	AIN_5P	Al	Channel 5 Positive Analog Input.
28, 29, 32	AG	ND	Р	Analog Ground.
30	AV	DD	Р	Analog Power Supply.
31	AG	ND	Р	Analog Ground.
33	DG	ND	Р	Digital Ground.
34	DV	DD	Р	Digital Power Supply.
35	DNC		Do Not Connect	Do Not Connect This Pin. Keep it floating.
36	SE	00	DO	Serial Data Output.
37	SC	LK	DI	Serial Clock Input.
38	nC	cs	DI	Chip-Select Input Pin. Active low.

NOTE: 1. Al = Analog Input, AO = Analog Output, AIO = Analog Input and Output, DI = Digital Input, DO = Digital Output, DIO = Digital Input and Output, P = Power Supply.

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

ELECTRICAL CHARACTERISTICS

(AVDD = 5V, DVDD = 3V, V_{REF} = 4.096V (internal), and f_{SAMPLE} = 500kSPS, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Analog Inputs						
		Input range = ±2.5 × V _{REF}	-2.5 × V _{REF}		2.5 × V _{REF}	
		Input range = ±1.25 × V _{REF}	-1.25 × V _{REF}		1.25 × V _{REF}	
Full-Scale Input Span (1) (AIN nP to AIN nGND)		Input range = ±0.625 × V _{REF}	-0.625 × V _{REF}		0.625 × V _{REF}	V
. – – ,		Input range = 2.5 × V _{REF}	0		2.5 × V _{REF}	
		Input range = 1.25 × V _{REF}	0		1.25 × V _{REF}	
		Input range = ±2.5 × V _{REF}	-2.5 × V _{REF}		2.5 × V _{REF}	
		Input range = ±1.25 × V _{REF}	-1.25 × V _{REF}		1.25 × V _{REF}	
Operating Input Range, Positive Input (AIN_nP)		Input range = ±0.625 × V _{REF}	-0.625 × V _{REF}		0.625 × V _{REF}	٧
		Input range = 2.5 × V _{REF}	0		2.5 × V _{REF}	
		Input range = 1.25 × V _{REF}	0		1.25 × V _{REF}	
Operating Input Range, Negative Input (AIN_nGND)		All input ranges	-0.1	0	0.1	>
Input Impedance	Z _I	At T _A = +25°C, all input ranges	0.85	1	1.15	ΜΩ
Input Impedance Drift		All input ranges		7	25	ppm/°C
		With voltage at AIN_nP pin = V_{IN} , input range = $\pm 2.5 \times V_{REF}$		$\frac{V_{IN}-2.25}{R_{IN}}$		μΑ
		With voltage at AIN_nP pin = V_{IN} , input range = $\pm 1.25 \times V_{REF}$		$\frac{V_{IN}-2.00}{R_{IN}}$		μA
Input Leakage Current	I _{Ikg(in)}	With voltage at AIN_nP pin = V _{IN} , input range = ±0.625 × V _{REF}		$\frac{V_{IN}-1.60}{R_{IN}}$		μA
		With voltage at AIN_nP pin = V_{IN} , input range = 2.5 × V_{REF}		$\frac{V_{IN}-2.50}{R_{IN}}$		μA
		With voltage at AIN_nP pin = VIN, input range = 1.25 × V _{REF}		$\frac{V_{IN}-2.50}{R_{IN}}$		μA
Input Over-Voltage Protection						
Over Veltage Protection Veltage	V	AVDD = 5V or offers low impedance < 30kΩ, all input ranges	-20		20	٧
Over-Voltage Protection Voltage	V _{OVP}	AVDD = floating with impedance > 30kΩ, all input ranges	-11		11	٧

NOTE:

1. Ideal input span, does not include gain or offset error.

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

ELECTRICAL CHARACTERISTICS (continued)

(AVDD = 5V, DVDD = 3V, V_{REF} = 4.096V (internal), and f_{SAMPLE} = 500kSPS, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
System Performance	•		•	•	<u>'</u>	•
Resolution			16			Bits
No Missing Codes	NMC		16			Bits
Differential Nonlinearity	DNL		-0.99	±0.5	1.5	LSB (2)
Integral Nonlinearity (3)	INL		-2	±0.75	2	LSB
Gain Error	E _G	At T _A = +25°C, all input ranges		±0.02	±0.05	%FSR (4)
Gain Error Matching (Channel-to-Channel)		At T _A = +25°C, all input ranges		±0.02	±0.05	%FSR
Gain Error Temperature Drift		All input ranges		±1	±4	ppm/°C
		At $T_A = +25$ °C, input range = $\pm 2.5 \times V_{REF}$		±0.5	±0.75	
		At $T_A = +25$ °C, input range = ±1.25 × V_{REF}		±0.5	±1	
Offset Error	Eo	At $T_A = +25$ °C, input range = ±0.625 × V_{REF}		±0.5	±1.5	mV
		At $T_A = +25$ °C, input range = 0 to 2.5 × V_{REF}		±0.5	±2	
		At $T_A = +25$ °C, input range = 0 to 1.25 × V_{REF}		±0.5	±2	
		At $T_A = +25^{\circ}C$, input range = $\pm 2.5 \times V_{REF}$		±0.5	±0.75	
		At $T_A = +25^{\circ}C$, input range = $\pm 1.25 \times V_{REF}$		±0.5	±1	
Offset Error Matching (Channel-to-Channel)		At $T_A = +25^{\circ}C$, input range = $\pm 0.625 \times V_{REF}$		±0.5	±1.5	mV
		At $T_A = +25$ °C, input range = 0 to 2.5 × V_{REF}		±0.5	±2	
		At $T_A = +25$ °C, input range = 0 to 1.25 × V_{REF}		±0.5	±2	
Offset Error Temperature Drift		All input ranges		±1	±3	ppm/°C
Sampling Dynamics						
Conversion Time	t _{CONV}				850	ns
Acquisition Time	t _{ACQ}		1150			ns
Maximum Throughput Rate without Latency	fs				500	kSPS

NOTES:

- 2. LSB = least significant bit.
- 3. This parameter is the endpoint INL, not best fit INL.
- 4. FSR = full-scale range.

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

ELECTRICAL CHARACTERISTICS (continued)

(AVDD = 5V, DVDD = 3V, V_{REF} = 4.096V (internal), and f_{SAMPLE} = 500kSPS, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	1	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Dynamic Characteristics	i						
			Input range = ±2.5 × V _{REF}	90	92		
			Input range = ±1.25 × V _{REF}	89	91		
Signal-to-Noise Ratio (V _{IN} - 0.5dBFS at 1kHz)		SNR	Input range = ±0.625 × V _{REF}	87.5	89		dB
,			Input range = 2.5 × V _{REF}	88.5	90.5		
			Input range = 1.25 × V _{REF}	87.5	89		
Total Harmonic Distortion (V _{IN} - 0.5dBFS at 1kHz)	(5)	THD	All input ranges		-102		dB
,			Input range = ±2.5 × V _{REF}	89	91.5		
			Input range = ±1.25 × V _{REF}	88.5	91		
Signal-to-Noise Ratio (V _{IN} - 0.5dBFS at 1kHz)		SINAD	Input range = ±0.625 × V _{REF}	87	89		dB
(VIN 0.0db) out iniz)			Input range = 2.5 × V _{REF}	87.5	90.5		
			Input range = 1.25 × V _{REF}	87	89		
Spurious-Free Dynamic R (V _{IN} - 0.5dBFS at 1kHz)	ange	SFDR	All input ranges		103		dB
Crosstalk Isolation (6)			Aggressor channel input is overdriven to 2 × maximum input voltage		110		dB
Crosstalk Memory (7)			Aggressor channel input is overdriven to 2 × maximum input voltage		90		dB
Consult Cinneral Dansdavidth	-3dB	BW _{-3dB} At T _A = +25°C, all input ranges			15		kHz
Small-Signal Bandwidth	-0.1dB	BW _{-0.1dB}	BW _{-0.1dB} At $T_A = +25^{\circ}C$, all input ranges		2.5		kHz
Auxiliary Channel							
Resolution				16			Bits
AUX_IN Voltage Range		V_{AUX_IN}	AUX_IN - AUX_GND	0		V_{REF}	V
Operating Input Range			AUX_IN	0		V_{REF}	V
Operating input Nange			AUX_GND		0		V
Input Capacitance		Cı	During sampling		75		pF
input Capacitance		O	During conversion		5		рі
Input Leakage Current		I _{Ikg(in)}			100		nA
Differential Nonlinearity		DNL		-0.99	±0.6	1.5	LSB
Integral Nonlinearity		INL		-4	±1.5	4	LSB
Gain Error		$E_{G(AUX)}$	At $T_A = +25$ °C		±0.02	±0.2	% FSR
Offset Error		E _{O(AUX)}	At T _A = +25°C	-10		10	mV
Signal-to-Noise Ratio S		SNR	V _{AUX_IN} = -0.5dBFS at 1kHz	87	89		dB
Total Harmonic Distortion	(5)	THD	V _{AUX_IN} = -0.5dBFS at 1kHz		-102		dB
Signal-to-Noise + Distortio	n	SINAD	V _{AUX_IN} = -0.5dBFS at 1kHz	86	88.5		dB
Spurious-Free Dynamic R	ange	SFDR	V _{AUX_IN} = -0.5dBFS at 1kHz		103		dB

NOTES:

- 5. Accumulated the first nine harmonics.
- 6. Any off-channel with 10 kHz, Full-scale sinusoidal input to channel being sampled with DC input.
- 7. From previously sampled to channel with 10kHz, Full-scale sinusoidal input to channel being sampled with DC input.

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

ELECTRICAL CHARACTERISTICS (continued)

(AVDD = 5V, DVDD = 3V, V_{REF} = 4.096V (internal), and f_{SAMPLE} = 500kSPS, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARA	METER	SYMBOL	CONDITION	IS	MIN	TYP	MAX	UNITS
Internal Refere	nce Output							
Voltage on REFI (Configured as 0	Output) ⁽⁸⁾	V_{REFIO_INT}	At T _A = +25°C		4.095	4.096	4.097	V
Internal Referen Drift	ce Temperature					6	10	ppm/°C
Decoupling Cap	acitor on REFIO	C _{OUT_REFIO}			10	22		μF
Reference voltage to ADC (on REFCAP pin)		V _{REFCAP}	At T _A = +25°C		4.095	4.096	4.097	V
Reference Buffer Output Impedance						0.5	1	Ω
Reference Buffe Drift	r Temperature					0.6	1.5	ppm/°C
Decoupling Cap	acitor on REFCAP	C _{OUT_REFCAP}			10	22		μF
Turn-On Time			C _{OUT_REFCAP} = 22µF, C _{OUT_REF}	_{:IO} = 22µF		15		ms
External Refere	ence Input							
External Referer REFIO (Configu		V _{REFIO_EXT}			4.046	4.096	4.146	V
Power-Supply I								
Analog Power-S	upply Voltage	AVDD	Analog supply		4.75	5	5.25	V
D: " D		D) (DD	Digital supply range	1.65	3.3	AVDD	V	
Digital Power-Su	ipply Voltage	DVDD	Digital supply range for specified performance		2.7	3.3	5.25	V
	Dynamic, AVDD	I	AVDD = 5V, f _S = maximum	SGM51652H8		13	16	mA
	Dynamic, AVDD	I _{AVDD_DYN}	and internal reference	SGM51652H4		8.5	11.5	mA
Analog Supply	Static		AVDD = 5V, device not converting and internal	SGM51652H8		10	12	mA
Current	Static	I _{AVDD_STC}	reference	SGM51652H4		5.5	8.5	mA
	Standby	I _{STDBY}	At AVDD = 5V, device in STDBY mode and internal reference			3	4.5	mA
	Power-Down	I _{PWR_DN}	At AVDD = 5V, device in PW	/R_DN		3	20	μA
Digital Supply C	urrent	I _{DVDD_DYN}	At DVDD = 3.3V, output = 0	000h		0.5		mA
Digital Inputs (CMOS)						•	
Digital Input Log	ic Levels DVDD >	V _{IH}			0.7 × DVDD		DVDD + 0.3	V
2.1V		V_{IL}			-0.3		0.3 × DVDD	V
	ic Levels DVDD ≤	V _{IH}			0.8 × DVDD		DVDD + 0.3	V
2.1V		V_{IL}			-0.3		0.2 × DVDD	V
Input Leakage C	urrent					100		nA
Input Pin Capacitance						5		pF
Digital Outputs	(CMOS)							
Digital Output L	ogia Lovols	V_{OH}	I _O = 500μA source		0.8 × DVDD		DVDD	V
Digital Output Lo		V _{OL}	I _O = 500μA sink		0		0.2 × DVDD	V
Floating State Le	eakage		Only for SDO			1		μA
Internal Pin Cap	acitance				<u> </u>	5		pF

NOTE:

8. Does not consider soldering shift effects.

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

TIMING REQUIREMENTS: SERIAL INTERFACE

(AVDD = 5V, DVDD = 3V, V_{REF} = 4.096V (internal), SDO load = 20pF, and f_{SAMPLE} = 500kSPS, Full = -40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Timing Specifications						
Sampling Frequency (f _{CLK} = max)	f _S				500	kSPS
ADC Cycle Time Period (f _{CLK} = max)	ts		2			μs
Serial Clock Frequency (f _S = max)	f _{SCLK}				66.6	MHz
Serial Clock Time Period (f _S = max)	t _{SCLK}		1/f _{SCLK}			ns
Conversion Time	t _{CONV}				850	ns
Delay Time: nCS Falling to Data Enable	t _{DZ_CSDO}				10	ns
Delay Time: Last SCLK Falling to nCS Rising	t _{D_CKCS}		10			ns
Delay Time: nCS Rising to SDO Going to 3-State	t _{DZ_CSDO}		10			ns
Timing Requirements						
Acquisition Time	t _{ACQ}		1150			ns
Clock High Time	t _{PH_CK}		0.4		0.6	t _{SCLK}
Clock Low Time	t _{PL_CK}		0.4		0.6	t _{SCLK}
nCS High Time	t _{PH_CS}		30			ns
Setup Time: nCS Falling to SCLK Falling	t _{su_csck}		30			ns
Hold Time: SCLK Falling to (Previous) Data Valid on SDO	t _{HT_CKDO}		5			ns
Setup Time: SDO Data Valid to SCLK Falling	t _{SU_DOCK}		5			ns
Setup Time: SDI Data Valid to SCLK Falling	t _{su_DICK}		5			ns
Hold Time: SCLK Falling to (Previous) Data Valid on SDI	t _{HT_CKDI}		5			ns
Setup Time: DAISY Data Valid to SCLK Falling	t _{su_dsyck}		5			ns
Hold Time: SCLK Falling to (Previous) Data Valid on DAISY	t _{HT_CKDSY}		5			ns

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

REGISTER MAPS

R/W: Read/Write bit(s) R: Read only bit(s)

The internal registers are divided into two categories: command registers and program registers.

Command Register Description

Table 1. Command Register Map

5				MSB	Byte				LSB Byte	Command	0 " 1 11 15
Register	B15	B14	B13	B12	B11	B10	В9	B8	B[7:0]	(Hex)	Operation in Next Frame
Continued Operation (NO_OP)	0	0	0	0	0	0	0	0	0000 0000	0000h	Continue operation in previous mode
Standby (STDBY)	1	0	0	0	0	0	1	0	0000 0000	8200h	Device is placed into standby mode
Power-Down (PWR_DN)	1	0	0	0	0	0	1	1	0000 0000	8300h	Device is powered down
Reset Program Registers (RST)	1	0	0	0	0	1	0	1	0000 0000	8500h	Program register is reset to default
Auto Ch. Sequence with Reset (AUTO_RST)	1	0	1	0	0	0	0	0	0000 0000	A000h	Auto mode enabled following a reset
Manual Ch 0 Selection (MAN_Ch_0)	1	1	0	0	0	0	0	0	0000 0000	C000h	Channel 0 input is selected
Manual Ch 1 Selection (MAN_Ch_1)	1	1	0	0	0	1	0	0	0000 0000	C400h	Channel 1 input is selected
Manual Ch 2 Selection (MAN_Ch_2)	1	1	0	0	1	0	0	0	0000 0000	C800h	Channel 2 input is selected
Manual Ch 3 Selection (MAN_Ch_3)	1	1	0	0	1	1	0	0	0000 0000	CC00h	Channel 3 input is selected
Manual Ch 4 Selection (MAN_Ch_4) (1)	1	1	0	1	0	0	0	0	0000 0000	D000h	Channel 4 input is selected
Manual Ch 5 Selection (MAN_Ch_5) (1)	1	1	0	1	0	1	0	0	0000 0000	D400h	Channel 5 input is selected
Manual Ch 6 Selection (MAN_Ch_6) (1)	1	1	0	1	1	0	0	0	0000 0000	D800h	Channel 6 input is selected
Manual Ch 7 Selection (MAN_Ch_7) (1)	1	1	0	1	1	1	0	0	0000 0000	DC00h	Channel 7 input is selected
Manual AUX Selection (MAN_AUX)	1	1	1	0	0	0	0	0	0000 0000	E000h	AUX channel input is selected

NOTE:

1. The bits or registers are not included in the SGM5152H4.

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

REGISTER MAPS (continued)

Program Register Description

Table 2. Program Register Map

Register	Register Address Bits[15:9]	Default Value (1)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Auto Scan Sequence	ing Contro												
AUTO_SEQ_EN	01h	FFh	CH7_EN (2)	CH6_EN (2)	CH5_EN (2)	CH4_EN (2)	CH3_EN	CH2_EN	CH1_EN	CH0_EN			
Channel Power-Down	02h	00h	CH7_PD (2)	CH6_PD (2)	CH5_PD (2)	CH4_PD (2)	CH3_PD	CH2_PD	CH1_PD	CH0_PD			
Device Features Se	Device Features Selection Control												
Feature Select	03h	00h	DEV	[1:0]	0	0	0 SDO [2:0]						
Range Select Registers													
Channel 0 Input Range	05h	00h	0	0	0	0	Range Select Channel 0 [3:0]						
Channel 1 Input Range	06h	00h	0	0	0	0	Rar	nge Select C	hannel 1 [3	:0]			
Channel 2 Input Range	07h	00h	0	0	0	0	Rar	Range Select Channel 2 [3:0]					
Channel 3 Input Range	08h	00h	0	0	0	0	Rar	nge Select C	hannel 3 [3	:0]			
Channel 4 Input Range ⁽²⁾	09h	00h	0	0	0	0	Rar	nge Select C	hannel 4 [3	:0]			
Channel 5 Input Range ⁽²⁾	0Ah	00h	0	0	0	0	Rar	nge Select C	hannel 5 [3	:0]			
Channel 6 Input Range ⁽²⁾	0Bh	00h	0	0	0	0	Rar	nge Select C	hannel 6 [3	:0]			
Channel 7 Input Range ⁽²⁾	0Ch	00h	0	0	0	0	Rar	nge Select C	hannel 7 [3	:0]			
Command Read Ba	ck (Read-O	nly)											
Command Read Back	3Fh	00h			CO	MMAND_WO	RD [7:0]						
Input Floating Detec	ction and S	tatus											
INPUT_FLOATING _DETECTION_EN	0Dh	00h	CH7_EN (2)	CH6_EN (2)	CH5_EN (2)	CH4_EN (2)	CH3_EN	CH2_EN	CH1_EN	CH0_EN			
INPUT_FLOATING _DETECTION_STA TUS	0Eh	00h	CH7_FT (2)	CH6_FT (2)	CH5_FT (2)	CH4_FT (2)	CH3_FT	CH2_FT	CH1_FT	CH0_FT			

NOTES

- 1. All registers are reset to the default values at power-on or a reset operation.
- 2. The bits or registers are not included in the SGM5152H4.

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

REGISTER MAPS (continued)

Auto-Scan Sequencing Control Registers

Table 3. AUTO_SEQ_EN Register Details

BITS	BIT NAME	DESCRIPTION	COMMENT	TYPE	RESET
D[7]	CH7_EN (1)	Channel 7 Enable 0 = Channel 7 is not selected for sequencing in AUTO_RST mode 1 = Channel 7 is selected for sequencing in AUTO_RST mode		R/W	1h
D[6]	CH6_EN (1)	Channel 6 Enable 0 = Channel 6 is not selected for sequencing in AUTO_RST mode 1 = Channel 6 is selected for sequencing in AUTO_RST mode		R/W	1h
D[5]	CH5_EN (1)	Channel 5 Enable 0 = Channel 5 is not selected for sequencing in AUTO_RST mode 1 = Channel 5 is selected for sequencing in AUTO_RST mode		R/W	1h
D[4]	CH4_EN (1)	Channel 4 Enable 0 = Channel 4 is not selected for sequencing in AUTO_RST mode 1 = Channel 4 is selected for sequencing in AUTO_RST mode		R/W	1h
D[3]	CH3_EN	Channel 3 Enable 0 = Channel 3 is not selected for sequencing in AUTO_RST mode 1 = Channel 3 is selected for sequencing in AUTO_RST mode		R/W	1h
D[2]	CH2_EN	Channel 2 Enable 0 = Channel 2 is not selected for sequencing in AUTO_RST mode 1 = Channel 2 is selected for sequencing in AUTO_RST mode		R/W	1h
D[1]	CH1_EN	Channel 1 Enable 0 = Channel 1 is not selected for sequencing in AUTO_RST mode 1 = Channel 1 is selected for sequencing in AUTO_RST mode		R/W	1h
D[0]	CH0_EN	Channel 0 Enable 0 = Channel 0 is not selected for sequencing in AUTO_RST mode 1 = Channel 0 is selected for sequencing in AUTO_RST mode		R/W	1h

NOTE:

1. The bits or registers are not included in the SGM5152H4.

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

REGISTER MAPS (continued)

Channel Power-Down Register (Address = 02h)

Table 4. Channel Power-Down Register Details

BITS	BIT NAME	DESCRIPTION	COMMENT	TYPE	RESET
D[7]	CH7_PD (1)	Channel 7 Power-Down 0 = channel is on 1 = channel is power down		R/W	0h
D[6]	CH6_PD (1)	Channel 6 Power-Down 0 = channel is on 1 = channel is power down		R/W	0h
D[5]	CH5_PD (1)	Channel 5 Power-Down 0 = channel is on 1 = channel is power down		R/W	0h
D[4]	CH4_PD ⁽¹⁾	Channel 4 Power-Down 0 = channel is on 1 = channel is power down		R/W	0h
D[3]	CH3_PD	Channel 3 Power-Down 0 = channel is on. 1 = channel is power down.		R/W	0h
D[2]	CH2_PD	Channel 2 Power-Down 0 = channel is on 1 = channel is power down		R/W	0h
D[1]	CH1_PD	Channel 1 Power-Down 0 = channel is on 1 = channel is power down		R/W	0h
D[0]	CH0_PD	Channel 0 Power-Down 0 = channel is on 1 = channel is power down		R/W	0h

NOTE:

^{1.} The bits or registers are not included in the SGM5152H4.

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

REGISTER MAPS (continued)

Device Feature Selection Control Register (Address = 03h)

Table 5. Feature Select Register Details

BITS	BIT NAME	DESCRIPTION	COMMENT	TYPE	RESET
D[7:6]	DEV[1:0]	Device ID Bits 00 = ID for device 0 in daisy-chain mode 01 = ID for device 1 in daisy-chain mode 10 = ID for device 2 in daisy-chain mode 11 = ID for device 3 in daisy-chain mode		R/W	0h
D[5]	0	Must always be set to 0		R	0h
D[4]	0	Must always be set to 0		R	0h
D[3]	0	Must always be set to 0		R	0h
D[2:0]	SDO[2:0]	SDO Data Format Bits	Refer to Table 6	R/W	0h

Table 6. SDO Data Format

SDO Format	Beginning of The Output Bit	Output Format					
SDO[2:0]	Stream	BITS [24:9]	BITS [8:5]	BITS [4:3]	BITS [2:0]		
000	16 th SCLK falling edge, no latency	Conversion result for selected channel (MSB-first)	SDO pulled low				
001	16 th SCLK falling edge, no latency	Conversion result for selected channel (MSB-first)	Channel address (1)	SDO pu	ılled low		
010	16 th SCLK falling edge, no latency	Conversion result for selected channel (MSB-first)	Channel address (1)	Device address ⁽¹⁾	SDO pulled low		
011	16 th SCLK falling edge, no latency	Conversion result for selected channel (MSB-first)	Channel address (1)	Device address ⁽¹⁾	Input range (1)		

NOTE:

1. Table 7 lists the bit descriptions for these channel addresses, device addresses, and input range.

Table 7. SDO Data Bit Details

BITS	DESCRIPTION
D[24:9]	16 bits of conversion result for the channel represented in MSB-first format.
D[8:5]	Four Bits of Channel Address 0000 = Channel 0 0001 = Channel 1 0010 = Channel 2 0011 = Channel 3 0100 = Channel 4 (valid only for the SGM51652H8) 0101 = Channel 5 (valid only for the SGM51652H8) 0110 = Channel 6 (valid only for the SGM51652H8) 0111 = Channel 7 (valid only for the SGM51652H8)
D[4:3]	Two bits of device address (mainly useful in daisy-chain mode).
D[2:0]	Three LSB bits of input voltage range (refer to the Range Select Registers section).

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

REGISTER MAPS (continued)

Range Select Registers (Addresses 05h - 0Ch)

Table 8. Channel n Input Range Registers Details

BITS	BIT NAME	DESCRIPTION	COMMENT	TYPE	RESET
D[7:4]	0	Must always be set to 0		R	0h
D[3:0]	Range_CHn[3:0]	Input range selection bits for channel n (n = 0 to 3 for the SGM51652H4 and n = 0 to 7 for the SGM51652H8) 0000 = Input range is set to $\pm 2.5 \times V_{REF}$ 0001 = Input range is set to $\pm 1.25 \times V_{REF}$ 0010 = Input range is set to $\pm 0.625 \times V_{REF}$ 0101 = Input range is set to 0 to $\pm 0.500000000000000000000000000000000000$		R/W	0h

Command Read-Back Register (Address = 3Fh)

Table 9. Command Read-Back Register Details

BITS	BIT NAME	DESCRIPTION	COMMENT	TYPE	RESET
D[7:0]	COMMAND_WORD[15:8]	Command executed in previous data frame		R	0h

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges

REGISTER MAPS (continued)

Input Floating Detection and Status (Address = 0Dh - 0Eh)

Table 10. INPUT_FLOATING_DETECTION_EN Register Details (Address = 0Dh)

BITS	BIT NAME	DESCRIPTION	COMMENT	TYPE	RESET
D[7]	CH7_EN (1)	Channel 7 Enable 0 = Channel 7 is disabled in FLOATING_DETECTION mode 1 = Channel 7 is enabled in FLOATING_DETECTION mode		R/W	0h
D[6]	CH6_EN (1)	Channel 6 Enable 0 = Channel 6 is disabled in FLOATING_DETECTION mode 1 = Channel 6 is enabled in FLOATING_DETECTION mode		R/W	0h
D[5]	CH5_EN (1)	Channel 5 Enable 0 = Channel 5 is disabled in FLOATING_DETECTION mode 1 = Channel 5 is enabled in FLOATING_DETECTION mode		R/W	0h
D[4]	CH4_EN (1)	Channel 4 Enable 0 = Channel 4 is disabled in FLOATING_DETECTION mode 1 = Channel 4 is enabled in FLOATING_DETECTION mode		R/W	0h
D[3]	CH3_EN	Channel 3 Enable 0 = Channel 3 is disabled in FLOATING_DETECTION mode 1 = Channel 3 is enabled in FLOATING_DETECTION mode		R/W	0h
D[2]	CH2_EN	Channel 2 Enable 0 = Channel 2 is disabled in FLOATING_DETECTION mode 1 = Channel 2 is enabled in FLOATING_DETECTION mode		R/W	0h
D[1]	CH1_EN	Channel 1 Enable 0 = Channel 1 is disabled in FLOATING_DETECTION mode 1 = Channel 1 is enabled in FLOATING_DETECTION mode		R/W	0h
D[0]	CH0_EN	Channel 0 Enable 0 = Channel 0 is disabled in FLOATING_DETECTION mode 1 = Channel 0 is enabled in FLOATING_DETECTION mode		R/W	0h

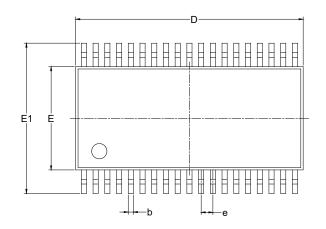
NOTE:

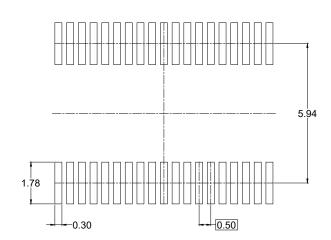
Table 11. INPUT_FLOATING_DETECTION_STATUS Register Details (Address = 0Eh)

BITS	BIT NAME	DESCRIPTION	COMMENT	TYPE	RESET
D[7]	CH7_FT ⁽¹⁾	Channel 7 FLOATINT_STATUS 0 = Channel 7 is not in FLOATING status 1 = Channel 7 is in FLOATING status		R/W	0h
D[6]	CH6_FT ⁽¹⁾	Channel 6 FLOATINT_STATUS 0 = Channel 6 is not in FLOATING status 1 = Channel 6 is in FLOATING status		R/W	0h
D[5]	CH5_FT ⁽¹⁾	Channel 5 FLOATINT_STATUS 0 = Channel 5 is not in FLOATING status 1 = Channel 5 is in FLOATING status		R/W	0h
D[4]	CH4_FT ⁽¹⁾	Channel 4 FLOATINT_STATUS 0 = Channel 4 is not in FLOATING status 1 = Channel 4 is in FLOATING status		R/W	0h
D[3]	CH3_FT	Channel 3 FLOATINT_STATUS 0 = Channel 3 is not in FLOATING status 1 = Channel 3 is in FLOATING status		R/W	0h
D[2]	CH2_FT	Channel 2 FLOATINT_STATUS 0 = Channel 2 is not in FLOATING status 1 = Channel 2 is in FLOATING status		R/W	0h
D[1]	CH1_FT	Channel 1 FLOATINT_STATUS 0 = Channel 1 is not in FLOATING status 1 = Channel 1 is in FLOATING status		R/W	0h
D[0]	CH0_FT	Channel 0 FLOATINT_STATUS 0 = Channel 0 is not in FLOATING status 1 = Channel 0 is in FLOATING status		R/W	0h

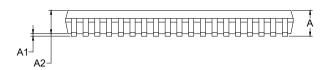
NOTE:

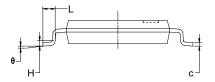
^{1.} The bits or registers are not included in the SGM5152H4.




^{1.} The bits or registers are not included in the SGM5152H4.

16-Bit, 500kSPS, 4- and 8-Channel, Single Supply, SAR ADCs with Bipolar Input Ranges


PACKAGE OUTLINE DIMENSIONS


TSSOP-38

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	MIN	MAX	MIN	MAX
Α		1.200		0.047
A1	0.050	0.150	0.002	0.006
A2	0.800	1.000	0.031	0.039
b	0.170	0.270	0.007	0.011
С	0.090	0.200	0.004	0.008
D	9.600	9.800	0.378	0.386
Е	4.300	4.500	0.169	0.177
E1	6.250	6.550	0.246	0.258
е	0.500 BSC		0.020 BSC	
Н	0.250 TYP 0.010 TYP) TYP	
L	0.450	0.750	0.018	0.030
θ	1°	7°	1°	7°

NOTES:

- 1. Body dimensions do not include mode flash or protrusion.
- 2. This drawing is subject to change without notice.

