

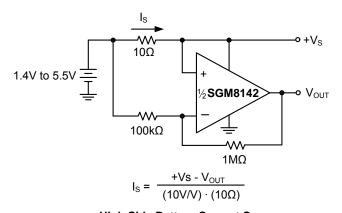
SGM8142 350nA, Dual Rail-to-Rail I/O Operational Amplifier

PRODUCT DESCRIPTION

The SGM8142 is guaranteed to operate with a single supply voltage as low as 1.4V, while drawing less than 350nA (TYP) of quiescent current per amplifier. This device is also designed to support rail-to-rail input and output operation. This combination of features supports battery-powered and portable applications.

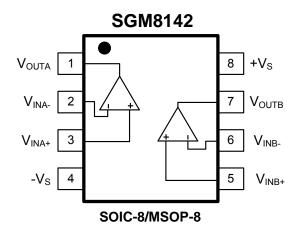
The SGM8142 has a gain-bandwidth product of 5kHz (TYP) and is unity gain stable. These specifications make this operational amplifier appropriate for low frequency applications, such as battery current monitoring and sensor conditioning.

The SGM8142 is offered in dual configuration. It is specified for the extended industrial (-40° C to $+85^{\circ}$ C) temperature range. The SGM8142 is available in the Green SOIC-8 and MSOP-8 packages.


FEATURES

- Low Quiescent Current: 350nA/Amplifier (TYP)
- Rail-to-Rail Input and Output
- Gain-Bandwidth Product: 5kHz at V_S = 5V (TYP)
- Wide Supply Voltage Range: 1.4V to 5.5V
- Unity Gain Stable
- -40°C to +85°C Operating Temperature Range
- Available in Green SOIC-8 and MSOP-8 Packages

APPLICATIONS


Toll Booth Tags
Wearable Products
Temperature Measurement
Battery Powered System

TYPICAL APPLICATION

High Side Battery Current Sensor

PIN CONFIGURATIONS (TOP VIEW)

PACKAGE/ORDERING INFORMATION

MODEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
00110440	SGM8142YS8G/TR	SOIC-8	Tape and Reel, 2500	SGM8142YS8
SGM8142	SGM8142YMS8G/TR	MSOP-8	Tape and Reel, 3000	SGM8142YMS8

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Analog Inputs (V_{IN+} , V_{IN-}) (- V_S) - 0.1V to (+ V_S) + 0.1V
Differential Input Voltage $(-V_S)$ - $(+V_S)$
Storage Temperature Range65°C to +150°C
Junction Temperature
Operating Temperature Range40°C to +85°C
Lead Temperature (Soldering 10sec)
260°C
ESD Susceptibility
HBM
MM

NOTE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

SGM8142

ELECTRICAL CHARACTERISTICS

 $+V_S$ = +1.4V to +5.0V, $-V_S$ = GND, T_A = +25°C, V_{CM} = +V_S/2, V_{OUT} ≈ +V_S/2 and R_L = 1MΩ to +V_S/2 (1), unless otherwise noted.

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS	
DC ELECTRICAL CHARAC	TERISTICS		•				
Input Offset Voltage (Vos)		$V_{CM} = +V_S/2$		0.4	2.5	mV	
Input Offset Voltage Drift (Δ'	V _{OS} /Δ _T)	$V_{CM} = +V_S/2, -40^{\circ}C \le T_A \le +85^{\circ}C$		2		μV/°C	
Power Supply Rejection Rat	tio (PSRR)	+V _S = 1.4V to 5.5V	69	80		dB	
Input Common Mode Voltag	e Range (V _{CMR})		-Vs - 0.1		+Vs + 0.1	V	
		+V _S = 5.0V, V _{CM} = -0.1V to 5.1V	69	83			
Common Mode Rejection R	atio (CMRR)	+V _S = 5.0V, V _{CM} = 2.5V to 5.1V	67	82		dB	
		+V _S = 5.0V, V _{CM} = -0.1V to 2.5V	63	77		1	
Large Signal Voltage Gain (A _{VO})		$+V_S = 1.4V$, $R_L = 50k\Omega$, $V_{OUT} = +V_S - 0.1V$	75	80			
		$+V_S = 2.5V$, $R_L = 50k\Omega$, $V_{OUT} = +V_S - 0.1V$		87		dB	
		$+V_S = 5.0V$, $R_L = 50k\Omega$, $V_{OUT} = +V_S - 0.1V$	87	93			
Input Bias Current (I _B)				1		pA	
Input Offset Current (I _{OS})				1		pA	
		$+V_S$ = 1.4V, R _L = 50kΩ	1.39	1.395		V	
	V _{OH}	$+V_S$ = 2.5V, R _L = 50kΩ		2.497			
Maximum Output		$+V_S$ = 5.0V, R _L = 50kΩ	4.99	4.996			
Voltage Swing		$+V_S$ = 1.4V, R _L = 50kΩ		4.6	10		
	V _{OL}	$+V_S$ = 2.5V, R _L = 50kΩ		3.1	10	mV	
		$+V_S = 5.0V$, $R_L = 50$ kΩ		3.6			
Ob ant Cinavit Comment (I)		+V _S = 2.5V		5.6		0	
Short Circuit Current (I _{SC})		+V _S = 5.0V	22	24		mA	
Supply Voltage			1.4		5.5	V	
		+V _S = 1.4V		300			
Quiescent Current/Amplifier	(I _Q)	+V _S = 2.5V	320			nA	
		+V _S = 5.0V		350	800		

ELECTRICAL CHARACTERISTICS

 $+V_S$ = +1.4V to +5.0V, $-V_S$ = GND, T_A = +25°C, V_{CM} = +V_S/2, $V_{OUT} \approx +V_S/2$ and R_L = 1M Ω to +V_S/2, C_L = 60pF ⁽¹⁾, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
AC ELECTRICAL CHARACTERISTIC	s	•	•	•	•
	+V _S = 1.4V		4.3		
Gain-Bandwidth Product (GBP)	+V _S = 2.5V		4.7		kHz
	+V _S = 5.0V		5		
	+V _S = 1.4V, V _{OUT} = 1V Step		1.3		
Slew Rate (SR)	+V _S = 2.5V, V _{OUT} = 1V Step		1.5		V/ms
	+V _S = 5.0V, V _{OUT} = 2V Step		1.6		
Phase Margin (PM)	+V _S = 1.4V to 5.5V		60		٥
	+V _S = 1.4V, f = 0.1Hz to 10Hz		4.4		
Input Voltage Noise (en p-p)	+V _S = 2.5V, f = 0.1Hz to 10Hz		3.9		μV_{P-P}
	+V _S = 5.0V, f = 0.1Hz to 10Hz		4.0		
	+V _S = 1.4V, f = 1kHz		135		
Input Voltage Noise Density (en)	+V _S = 2.5V, f = 1kHz		140		nV/ √HZ
	+V _S = 5.0V, f = 1kHz		130		

NOTE1: Refer to Figure 1 and Figure 2.

TEST CIRCUITS

The test circuits used for the DC and AC tests are shown in Figure 1 and Figure 2. The bypass capacitors are laid out according to the rules discussed in "Supply Bypass".

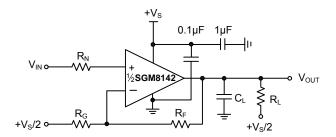


Figure 1. AC and DC Test Circuit for Most Non-Inverting Gain Conditions.

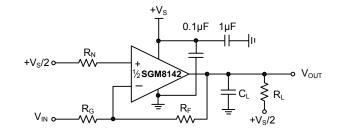
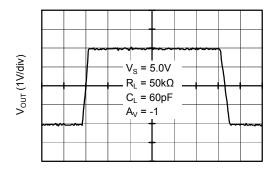
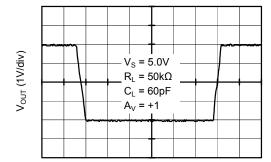



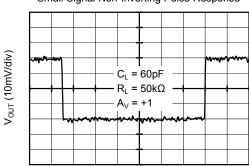
Figure 2. AC and DC Test Circuit for Most Inverting Gain Conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

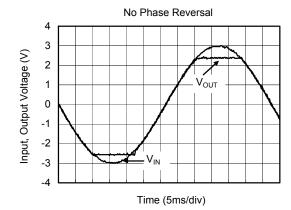

 T_A = +25°C, +V_S = +1.4V to +5.0V, -V_S = GND, V_{CM} = +V_S/2, V_{OUT} ≈ +V_S/2 and R_L = 1M Ω to +V_S/2, C_L = 60pF, unless otherwise noted.

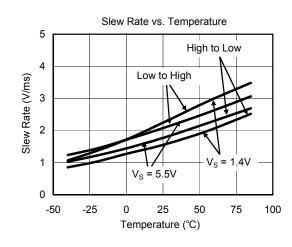
Time (5ms/div)

Large Signal Non-Inverting Pulse Response

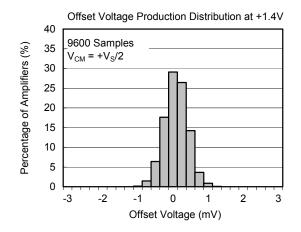

Time (5ms/div)

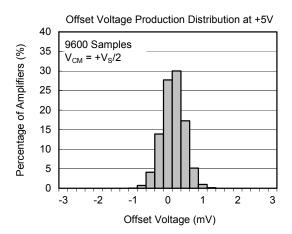
Small Signal Inverting Pulse Response



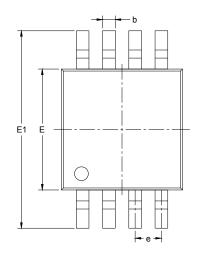

Time (5ms/div)

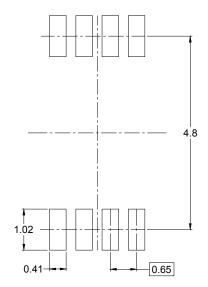
Small Signal Non-Inverting Pulse Response

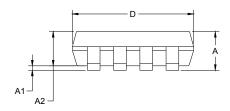

Time (5ms/div)

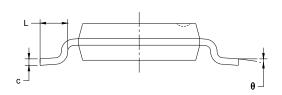


TYPICAL PERFORMANCE CHARACTERISTICS

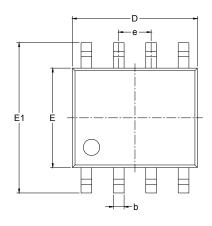

 $T_A = +25^{\circ}C, \ +V_S = +1.4V \ to \ +5.0V, \ -V_S = GND, \ V_{CM} = +V_S/2, \ V_{OUT} \approx +V_S/2 \ and \ R_L = 1M\Omega \ to \ +V_S/2, \ C_L = 60pF, \ unless \ otherwise \ noted.$

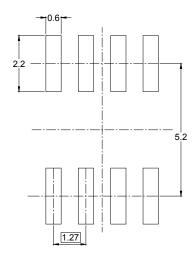



PACKAGE OUTLINE DIMENSIONS

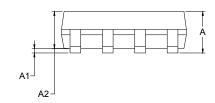

MSOP-8

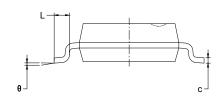
RECOMMENDED LAND PATTERN (Unit: mm)



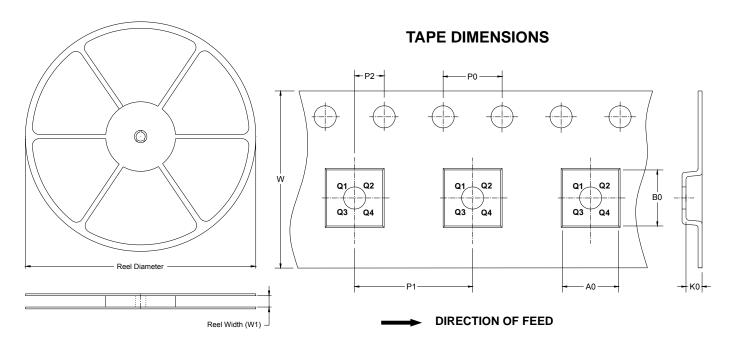


Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
Е	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.650 BSC 0.026 BS			BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	


PACKAGE OUTLINE DIMENSIONS


SOIC-8

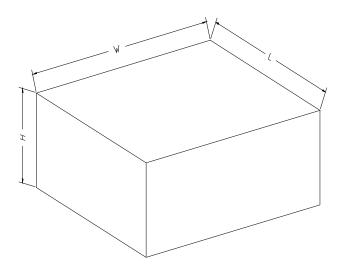
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13"	12.4	6.4	5.4	2.1	4.0	8.0	2.0	12.0	Q1
MSOP-8	13"	12.4	5.2	3.3	1.5	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13"	386	280	370	5	