SGM8422 2.2MHz, Dual, High Voltage, Rail-to-Rail I/O Amplifier

GENERAL DESCRIPTION

The SGM8422 (dual) is a low power, high voltage, rail to rail input and output operational amplifier. This device can operate from ±2.5V to ±15V dual power supplies or from a +5V to +30V single supply.

The SGM8422 has a gain bandwidth product of 2.2MHz (TYP), while consuming only 0.8mA per amplifier. It also provides common mode input ability beyond the supply rails, as well as rail-to-rail output capability. This enables the SGM8422 to offer maximum dynamic range at any supply voltage.

The SGM8422 also features fast slewing and settling times. These features make this amplifier ideal for use as voltage reference buffers in Thin Film Transistor Liquid Crystal Displays (TFT-LCD). Other applications include battery power, portable devices, and anywhere low power consumption is important.

The SGM8422 comes in Green SOIC-8 and MSOP-8 packages. It is specified over the extended -40°C to +85°C temperature range.

FEATURES

- ±2.5V to ±15V Dual Power Supplies or a +5V to +30V Single Supply
- · Gain Bandwidth Product: 2.2MHz (TYP)
- Supply Current/Amplifier: 0.8mA
- High Slew Rate: 1.9V/µs
- High Output Voltage Swing: 3.96V
 (with 70mA Output Current at V_S = +5V)
- Low Output Voltage Swing: 0.96V
 (with 70mA Output Current at V_S = +5V)
- Beyond the Rails Input Capability
- Rail-to-Rail Output Swing
- Green SOIC-8 and MSOP-8 Packages
- -40°C to +85°C Operating Temperature Range

APPLICATIONS

TFT-LCD Drive Circuits

Electronics Notebooks

Electronics Games

Touch-Screen Displays

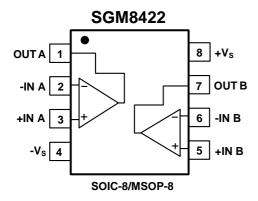
Wireless LANs

Office Automation

Personal Communication Devices

Personal Digital Assistants (PDA)

Portable Instrumentation


A/D Converter Buffer

Active Filters

PACKAGE/ORDERING INFORMATION

MODEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
SGM8422	SGM8422YS8G/TR	SOIC-8	Tape and Reel, 2500	SGM8422YS8
	SGM8422YMS8G/TR	MSOP-8	Tape and Reel, 3000	SGM8422YMS8

PIN CONFIGURATIONS (Top View)

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S (-V _S) - 0	
Storage Temperature Range	,
Junction Temperature	150°C
Operating Temperature Range	40°C to +85°C
Lead Temperature Range (Soldering 10 sec)
	260°C
ESD Susceptibility	
HBM	2000V
MM	150V

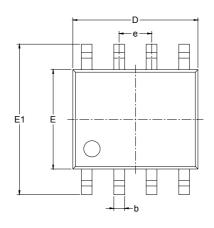
NOTE:

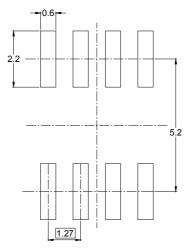
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS: V_S = +5V

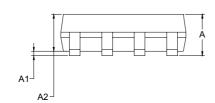
(At T_A = +25°C, R_L = 2k Ω connected to $V_S/2$, and V_{OUT} = $V_S/2$, unless otherwise noted.)

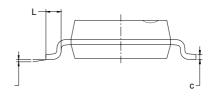
PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS	
INPUT CHARACTERISTICS							
Input Offset Voltage (Vos)		V _{CM} = V _S /2		0.9		mV	
Common-Mode Rejection Ratio (CMRR)		V _{CM} = -0.1V to +5.1V		75		dB	
Large Signal Voltage Gain (A _{VO})		V _{OUT} = +0.5V to +4.5V		105		dB	
OUTPUT CHARACTERISTICS							
	Vон	I _{OUT} = 70mA		3.96	.96		
Output Voltage Swing from Bail	VOH	$R_L = 2k\Omega$		4.98		V	
Output Voltage Swing from Rail	\/	I _{OUT} = -70mA	_{DUT} = -70mA 960			m\/	
	V_{OL}	$R_L = 2k\Omega$ 18		18		mV	
Short Circuit Current (I _{SC})		$R_L = 10\Omega$ to $V_S/2$		100		mA	
POWER SUPPLY							
Power Supply Rejection Ratio (PSRR)		V _S = +4V to +30V		90		dB	
Quiescent Current / Amplifier (IQ)		I _{OUT} = 0A 0.7			mA		
DYNAMIC PERFORMANCE							
Gain-Bandwidth Product (GBP)		$R_L = 2k\Omega$, $C_L = 100pF$, $V_{CM} = V_S/2$		2.2		MHz	
Slew Rate (SR) Up		V _{OUT} = 2V _{PP} Step, A _V = 1		1.7		V/µs	
Phase Margin		$R_L = 2k\Omega$, $C_L = 100pF$, $V_{CM} = V_S/2$		53		0	
Crosstalk		f = 1MHz		90		dB	
NOISE PERFORMANCE							
Voltage Noise Density (e _n)		$f = 1kHz, V_{CM} = V_S/2$ $f = 10kHz, V_{CM} = V_S/2$		81		nV/ _{√Hz}	
				30			


ELECTRICAL CHARACTERISTICS: V_S = ±15V

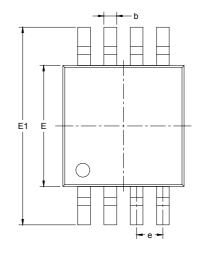

(At T_A = +25°C, R_L = 2k Ω connected to 0V, and V_{OUT} = 0V, unless otherwise noted.)

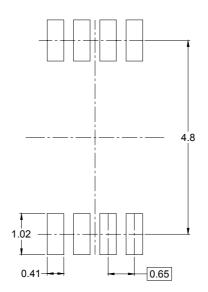
PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS	
INPUT CHARACTERISTICS			·				
Input Offset Voltage (V _{OS})		V _{CM} = 0V		0.9		mV	
Common-Mode Rejection Ratio (C	MRR)	V _{CM} = -15.1V to +15.1V		90		dB	
Large Signal Voltage Gain (A _{VO})		V _{OUT} = -14.5V to +14.5V		115		dB	
OUTPUT CHARACTERISTICS							
Output Voltage Swing from Rail	V _{OH}	D 010		29.88		V	
	V _{OL}	$R_L = 2k\Omega$		111		mV	
Short Circuit Current (I _{SC})		$R_L = 10\Omega$ to GND		300		mA	
POWER SUPPLY							
Power Supply Rejection Ratio (PSRR)		V _S = +4V to +30V	V to +30V			dB	
Quiescent Current / Amplifier (I _Q)		I _{OUT} = 0A		0.8		mA	
DYNAMIC PERFORMANCE							
Gain-Bandwidth Product (GBP)		$R_L = 2k\Omega$, $C_L = 100pF$, $V_{CM} = 0V$	2.2			MHz	
Slew Rate (SR) Up		$V_{OUT} = 2V_{PP}$ Step, $A_V = 1$		1.9		V/µs	
Phase Margin		$R_L = 2k\Omega$, $C_L = 100pF$, $V_{CM} = 0V$		53		o	
Crosstalk		f = 1MHz		95		dB	
NOISE PERFORMANCE			•				
Voltage Noise Density (en)		f = 1kHz, V _{CM} = 0V		90		m)// —	
		f = 10kHz, V _{CM} = 0V		30	nV/√		


PACKAGE OUTLINE DIMENSIONS

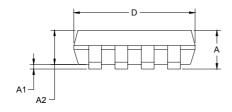

SOIC-8

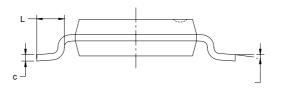
RECOMMENDED LAND PATTERN (Unit: mm)





Symbol	_	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050 BSC		
L	0.400	1.270	0.016	0.050	
θ 0°		8°	0°	8°	


PACKAGE OUTLINE DIMENSIONS


MSOP-8

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	_	nsions meters	Dimensions In Inches		
•	MIN	MAX	MIN	MAX	
А	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.650	BSC	0.026 BSC		
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	