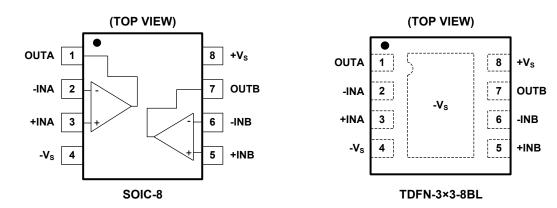
### SGM8262-2 High Speed, Ultra-Low Noise, Rail-to-Rail Output, High Output Current Amplifier

### **GENERAL DESCRIPTION**

The SGM8262-2 comprises two voltage feedback operational amplifiers capable of driving heavy loads with excellent linearity and low noise. The low distortion, high output current, and wide output dynamic range make the SGM8262-2 ideal for applications that require a large signal swing into a heavy load.

High speed, rail-to-rail output, low noise, wide bandwidth and fast slew rate of the SGM8262-2 keep distortion to a minimum.

The SGM8262-2 is available in Green SOIC-8 and TDFN-3×3-8BL packages. It operates over an ambient temperature range of -40°C to +85°C.


# **APPLICATIONS**

Twisted-Pair Line Drivers Audio Applications General-Purpose AC Applications

### **FEATURES**

- Dual Operational Amplifiers
- Voltage Feedback
- High Open-Loop Gain: 110dB
- Unity-Gain Stable
- Support Single or Dual Power Supplies: 4.5V to 36V or ±2.25V to ±18V
- Rail-to-Rail Output
- High Linear Output Current: 310mA Peak Current into 32Ω on ±12V Supplies While Maintaining -55dBc SFDR
- Ultra-Low Noise: 3.5nV/√Hz Voltage Noise Density at 100kHz 4pA/√Hz Current Noise Density at 100kHz
- High Speed:
  22MHz Bandwidth (G = +1, -3dB)
  33V/μs Slew Rate (R<sub>LOAD</sub> = 32Ω)
- -40°C to +85°C Operating Temperature Range
- Available in Green SOIC-8 and TDFN-3×3-8BL Packages

### **PIN CONFIGURATIONS**



#### NOTE:

For TDFN-3×3-8BL package, connect thermal die pad to  $-V_s$ . Soldering the thermal pad improves heat dissipation and provides specified performance.

#### **PACKAGE/ORDERING INFORMATION**

| MODEL       | PACKAGE<br>DESCRIPTION | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER | PACKAGE<br>MARKING       | PACKING<br>OPTION   |
|-------------|------------------------|-----------------------------------|--------------------|--------------------------|---------------------|
| SGM8262-2   | SOIC-8                 | -40°C to +85°C                    | SGM8262-2YS8G/TR   | SGM<br>82622YS8<br>XXXXX | Tape and Reel, 2500 |
| 3GIVI0202-2 | TDFN-3×3-8BL           | -40°C to +85°C                    | SGM8262-2YTDD8G/TR | SGM<br>82622DD<br>XXXXX  | Tape and Reel, 4000 |

#### **MARKING INFORMATION**

NOTE: XXXXX = Date Code and Vendor Code.

#### XXXXX

Vendor Code

------ Date Code - Week

— Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

#### **ABSOLUTE MAXIMUM RATINGS**

| 40V                     |
|-------------------------|
| V <sub>S</sub> ) + 0.3V |
| ±10mA                   |
| +150°C                  |
| to +150°C               |
| +260°C                  |
|                         |
| 8000V                   |
| 400V                    |
| 1000V                   |
|                         |

#### **RECOMMENDED OPERATING CONDITIONS**

Operating Temperature Range .....-40°C to +85°C

#### **OVERSTRESS CAUTION**

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

#### ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

#### DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

### **ELECTRICAL CHARACTERISTICS**

(At  $T_A = +25^{\circ}$ C,  $V_S = 4.5$ V to 36V or  $V_S = \pm 2.25$ V to  $\pm 18$ V, G = +1,  $R_{LOAD} = 32\Omega$ ,  $V_{CM} = V_{OUT} = V_S/2$ , unless otherwise noted.)<sup>(1)</sup>

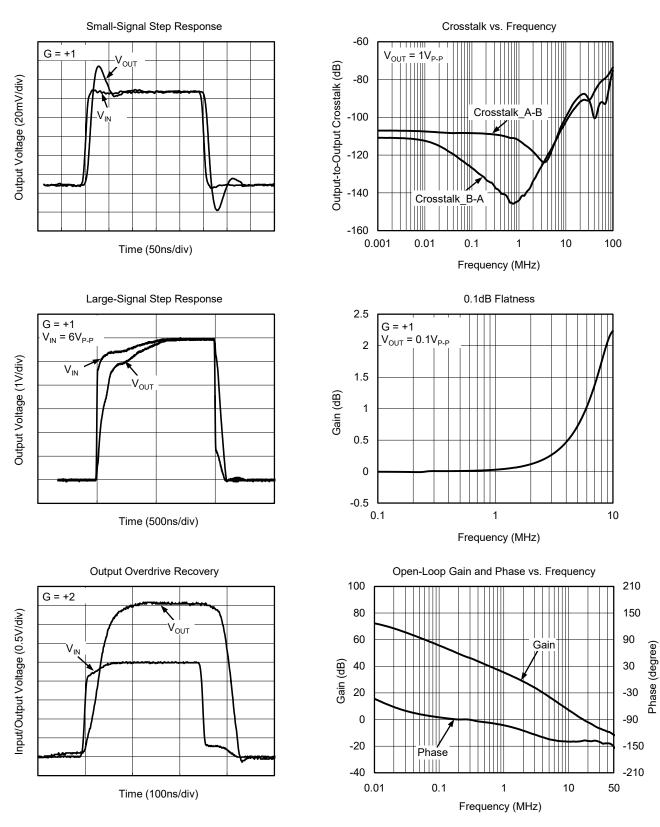
| PARAMETER                                               | CONDITIONS                                                                                                                   | MIN                    | TYP      | MAX                    | UNITS              |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|------------------------|--------------------|--|
| DC Performance                                          |                                                                                                                              |                        |          |                        |                    |  |
|                                                         |                                                                                                                              |                        | ±100     | ±500                   |                    |  |
| Input Offset Voltage (V <sub>OS</sub> )                 | -40°C to +85°C                                                                                                               |                        |          | ±610                   | μV                 |  |
| Input Offset Voltage Match                              |                                                                                                                              |                        | ±100     | ±700                   | μV                 |  |
| Input Offset Voltage Drift ( $\Delta V_{OS}/\Delta T$ ) |                                                                                                                              |                        | 0.5      |                        | µV/°C              |  |
|                                                         | $V_{CM} = V_S/2$                                                                                                             |                        | ±40      | ±300                   |                    |  |
| Input Bias Current (I <sub>B</sub> )                    | -40°C to +85°C                                                                                                               |                        |          | ±370                   | nA                 |  |
| Input Offset Current (I <sub>os</sub> )                 | $V_{CM} = V_S/2$                                                                                                             |                        | ±10      | ±120                   | nA                 |  |
|                                                         | $V_{OUT} = \pm 1V$ , $V_S = \pm 2.5V$ or 5V                                                                                  | 109                    | 115      |                        |                    |  |
| Open-Loop Voltage Gain (A <sub>OL</sub> )               | V <sub>OUT</sub> = ±2V, V <sub>S</sub> = ±5V or 10V                                                                          | 106                    | 115      |                        | dB                 |  |
|                                                         | V <sub>OUT</sub> = ±3V, V <sub>S</sub> = ±18V or 36V                                                                         | 95                     | 110      |                        |                    |  |
| Input Characteristics                                   |                                                                                                                              | I                      | I        |                        |                    |  |
|                                                         | $V_{\rm S} = \pm 2.25 V \text{ or } 4.5 V$                                                                                   |                        | 38    20 |                        |                    |  |
| Differential Input Impedance                            | V <sub>s</sub> = ±18V or 36V                                                                                                 |                        | 45∥15    |                        | kΩ∥pF              |  |
|                                                         | V <sub>s</sub> = ±2.25V or 4.5V                                                                                              |                        | 4∥6      |                        | 00 = 1             |  |
| Common Mode Input Impedance                             | V <sub>s</sub> = ±18V or 36V                                                                                                 |                        | 20    5  |                        | GΩ∥pF              |  |
| Input Common Mode Voltage Range (V <sub>CM</sub> )      |                                                                                                                              | (-V <sub>s</sub> ) + 2 |          | (+V <sub>s</sub> ) - 2 | V                  |  |
|                                                         | $\Delta V_{CM}$ = ±0.5V, V <sub>S</sub> = ±2.5V or 5V                                                                        | 107                    | 130      |                        |                    |  |
| Common Mode Rejection Ratio (CMRR)                      | $\Delta V_{CM} = \pm 1 V$ , $V_{S} = \pm 18 V$ or $36 V$                                                                     | 109                    | 125      |                        | dB                 |  |
| Output Characteristics                                  |                                                                                                                              | I                      | 1        |                        |                    |  |
| Output Voltage Swing from Rail ( $V_{OH}$ )             |                                                                                                                              |                        | 0.72     | 1.1                    | V                  |  |
| Output Voltage Swing from Rail (V <sub>OL</sub> )       | $R_{LOAD} = 32\Omega$ , $V_S = \pm 2.5V$ to $\pm 5V$ or $V_S = 5V$ to $10V$                                                  |                        | 0.51     | 0.64                   | V                  |  |
| Output Voltage Swing from Rail ( $V_{OH}$ )             | 5 4000                                                                                                                       |                        | 1.1      | 1.6                    | V                  |  |
| Output Voltage Swing from Rail (VoL)                    | $R_{LOAD} = 100\Omega$                                                                                                       |                        | 0.8      | 1                      | V                  |  |
|                                                         | SFDR $\leq$ -65dBc, f = 100kHz, V <sub>OUT</sub> = 0.4V <sub>P-P</sub> ,                                                     |                        | 200      |                        | mA                 |  |
| Peak AC Output Current <sup>(2)</sup>                   | $R_{LOAD} = 1\Omega$ , V <sub>S</sub> = ±2.25V or 4.5V<br>SFDR ≤ -55dBc, f = 100kHz, V <sub>OUT</sub> = 20V <sub>P-P</sub> , |                        | 210      |                        |                    |  |
|                                                         | $R_{LOAD} = 32\Omega$ , $V_{S} = \pm 12V$ or $24V$                                                                           |                        | 310      |                        |                    |  |
| Dynamic Performance                                     |                                                                                                                              |                        |          |                        |                    |  |
| -3dB Gain-Bandwidth Product                             | V <sub>OUT</sub> = 0.1V <sub>P-P</sub>                                                                                       |                        | 22       |                        | MHz                |  |
| 0.1dB Flatness                                          | V <sub>OUT</sub> = 0.1V <sub>P-P</sub>                                                                                       |                        | 1.6      |                        | MHz                |  |
| Large-Signal Bandwidth                                  | $V_{OUT} = 0.5V_{P.P}, V_S = \pm 2.25V \text{ or } 4.5V$                                                                     |                        | 23       |                        | MHz                |  |
|                                                         | $V_{OUT} = 2V_{P-P}, V_S = \pm 18V \text{ or } 36V$                                                                          |                        | 12       |                        |                    |  |
|                                                         | $V_{OUT} = 0.5V_{P-P}, V_S = \pm 2.25V \text{ or } 4.5V$                                                                     |                        | 27       |                        |                    |  |
| Slew Rate (SR)                                          | $V_{OUT} = 1V_{P.P}, V_S = \pm 2.5V \text{ or } 5V$                                                                          |                        | 33       |                        | V/µs               |  |
|                                                         | $V_{OUT} = 4V_{P-P}, V_S = \pm 5V \text{ or } 10V$                                                                           |                        | 49       |                        |                    |  |
|                                                         | $V_{OUT} = 4V_{P-P}, V_S = \pm 12V \text{ or } 24V$                                                                          |                        | 34       |                        |                    |  |
| Noise/Distortion Performance                            | I                                                                                                                            | [                      | [        | 1                      | [                  |  |
|                                                         | $f_{C} = 100 \text{kHz}, V_{OUT} = 1 V_{P-P}, G = +2, V_{S} = \pm 2.25 \text{V or } 4.5 \text{V}$                            |                        | -95      |                        |                    |  |
| Distortion (Worst Harmonic)                             | $f_{C} = 100 \text{kHz}, V_{OUT} = 2V_{P-P}, G = +2, V_{S} = \pm 2.5 \text{V or } 5 \text{V}$                                |                        | -93      |                        | dBc                |  |
| · /                                                     | $f_{C} = 100 \text{kHz}, V_{OUT} = 6V_{P-P}, G = +2, V_{S} = \pm 5V \text{ or } 10V$                                         |                        | -88      |                        |                    |  |
|                                                         | $f_{C} = 100 \text{kHz}, V_{OUT} = 20 V_{P-P}, G = +5, V_{S} = \pm 12 V \text{ or } 24 V$                                    |                        | -52      | <u> </u>               |                    |  |
| Input Voltage Noise Density (e <sub>n</sub> )           | f = 100kHz                                                                                                                   |                        | 3.5      |                        | nV/ <sub>√Hz</sub> |  |
| Input Current Noise Density (i <sub>n</sub> )           | f = 100kHz                                                                                                                   |                        | 4        |                        | pA/√ <sub>Hz</sub> |  |

### High Speed, Ultra-Low Noise, Rail-to-Rail Output, High Output Current Amplifier

# **ELECTRICAL CHARACTERISTICS (continued)**

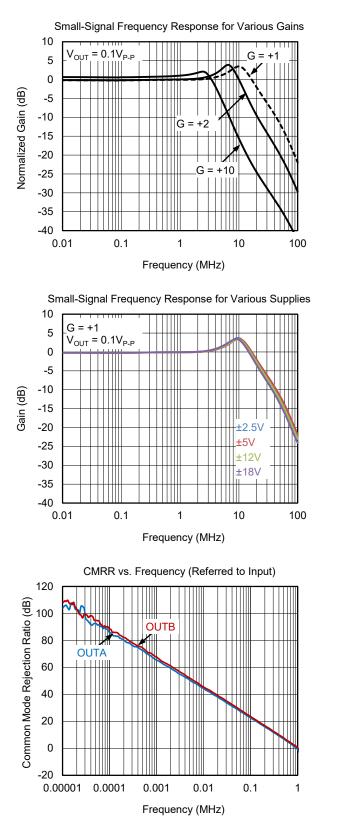
(At  $T_A = +25^{\circ}$ C,  $V_S = 4.5$ V to 36V or  $V_S = \pm 2.25$ V to  $\pm 18$ V, G = +1,  $R_{LOAD} = 32\Omega$ ,  $V_{CM} = V_{OUT} = V_S/2$ , unless otherwise noted.)<sup>(1)</sup>

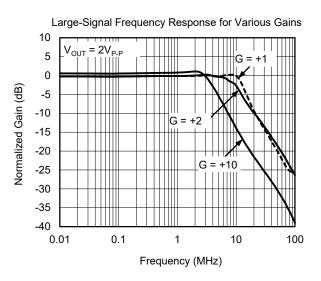
| PARAMETER                                 | CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MIN                                                                       | TYP     | MAX  | UNITS |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------|------|-------|
| Power Supply                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |         |      |       |
| Operating Voltage Range (Dual Supply)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±2.25                                                                     |         | ±18  | V     |
| Supply Current/Amplifier $(I_Q)$          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           | 9       | 11.5 | mA    |
| Power Supply Rejection Ratio (PSRR)       | $\Delta V_{\rm S} = \pm 0.5 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100                                                                       | 115     |      | dB    |
| Audio Performance                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           |         |      |       |
|                                           | $f = 1 \text{ kHz}, V_{\text{OUT}} = 0.5 V_{\text{P-P}}, V_{\text{S}} = \pm 2.25 \text{ V or } 4.5 \text{ V},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           | 0.0006  |      | %     |
|                                           | BW = 80kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                           | -104    |      | dB    |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                           | 0.0003  |      | %     |
| Total Harmonia Distartian + Naisa (THD+N) | $f = 1kHz, V_{OUT} = 1V_{P-P}, V_S = \pm 2.5V \text{ or } 5V, BW = 80kHz$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -110                                                                      |         |      | dB    |
| Total Harmonic Distortion + Noise (THD+N) | f = 4 d  = 1/2 = $C(d - 1/2) = 1/2/2 = 40/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 = 0.04/2 =$ |                                                                           | 0.00005 |      | %     |
|                                           | $f = 1kHz, V_{OUT} = 6V_{P-P}, V_S = \pm 5V \text{ or } 10V, BW = 80kHz$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $_{\rm T}$ = 6V <sub>P-P</sub> , V <sub>S</sub> = ±5V or 10V, BVV = 80KHz |         |      | dB    |
|                                           | f = 4 t  = 1/2 = 21/2 = 1/2 = 1/2 = 2/2/2 = 2/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 = 0/2/2 =  |                                                                           | 0.00005 |      | %     |
|                                           | $f = 1 \text{kHz}, V_{\text{OUT}} = 3 V_{\text{RMS}}, V_{\text{S}} = \pm 12 \text{V} \text{ or } 24 \text{V}, \text{BW} = 80 \text{kHz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           | -126    |      | dB    |

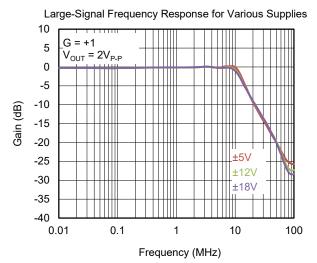

NOTES:

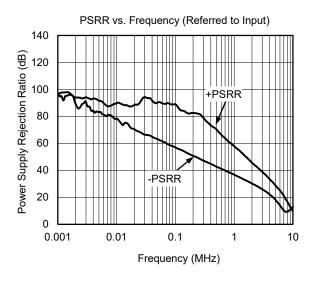
1. Unity gain used to facilitate characterization. To improve stability, a gain of 2 or greater is recommended.

2. Peak AC output current specification assumes normal AC operation and is not valid for continuous DC operation.


### **TYPICAL PERFORMANCE CHARACTERISTICS**

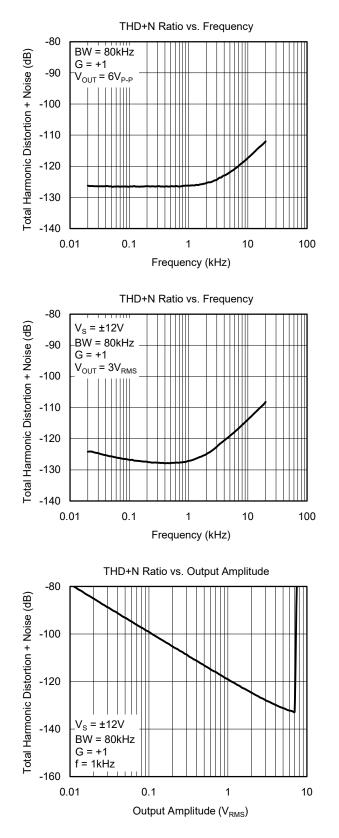

At  $T_A = +25^{\circ}C$ ,  $V_S = \pm 5V$ ,  $R_{LOAD} = 32\Omega$ , unless otherwise noted.

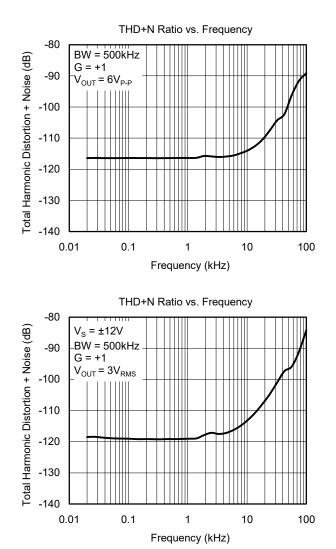




### **TYPICAL PERFORMANCE CHARACTERISTICS (continued)**

At  $T_A = +25^{\circ}C$ ,  $V_S = \pm 5V$ ,  $R_{LOAD} = 32\Omega$ , unless otherwise noted.








### **TYPICAL PERFORMANCE CHARACTERISTICS (continued)**

At  $T_A$  = +25°C,  $V_S$  = ±5V,  $R_{LOAD}$  = 32 $\Omega$ , unless otherwise noted.





#### **APPLICATION INFORMATION**

The SGM8262-2 is a voltage feedback operational amplifier that features rail-to-rail output stage. The SGM8262-2 can operate from a wide supply range,  $\pm 2.25V$  to  $\pm 18V$ .

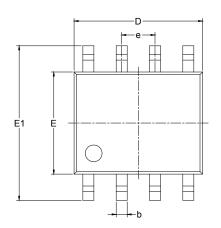
#### **Power Supply and Decoupling**

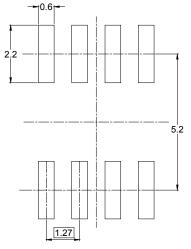
The SGM8262-2 can be powered with a good quality, well-regulated, low noise supply from  $\pm 2.25V$  to  $\pm 18V$ . Pay careful attention to decoupling the power supply. Use high quality capacitors with low equivalent series resistance (ESR), such as multilayer ceramic capacitors (MLCCs), to minimize the supply voltage ripple and power dissipation. Locate a  $0.1\mu$ F MLCC decoupling capacitor(s) no more than 1/8 inch away from the power supply pin(s). A large tantalum  $10\mu$ F to  $22\mu$ F capacitor is recommended to provide good decoupling for lower frequency signals and to supply current for fast, large signal changes at the SGM8262-2 outputs.

#### **Layout Considerations**

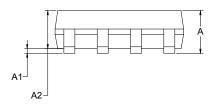
As with all high speed applications, pay careful attention to printed circuit board (PCB) layout to prevent associated board parasitics from becoming problematic. The PCB should have a low impedance return path (or ground) to the supply. Removing the ground plane from all layers in the immediate area of the amplifier helps to reduce stray capacitances. The signal routing should be short and direct in order to minimize the parasitic inductance and capacitance associated with these traces. Locate termination resistors and loads as close as possible to their respective inputs and outputs. Keep input traces as far apart as possible from the output traces to minimize coupling (crosstalk) though the board.

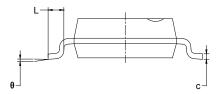
When the SGM8262-2 is configured as a differential driver, as in some line driving applications, provide a symmetrical layout to the extent possible in order to maximize balanced performance. When running differential signals over a long distance, the traces on the PCB should be close together or any differential wiring should be twisted together to minimize the area of the inductive loop that is formed. This reduces the radiated energy and makes the circuit less susceptible to RF interference. Adherence to strip line design techniques for long signal traces (greater than approximately 1 inch) is recommended.


#### **REVISION HISTORY**


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| Changes from Original (JUNE 2017) to REV.A      | Page |
|-------------------------------------------------|------|
| Changed from product preview to production data | All  |

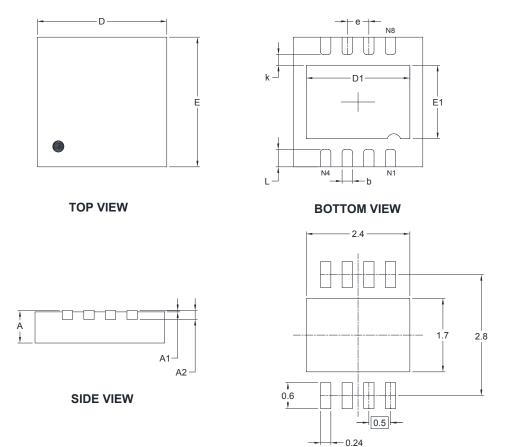

# PACKAGE OUTLINE DIMENSIONS


# SOIC-8





RECOMMENDED LAND PATTERN (Unit: mm)

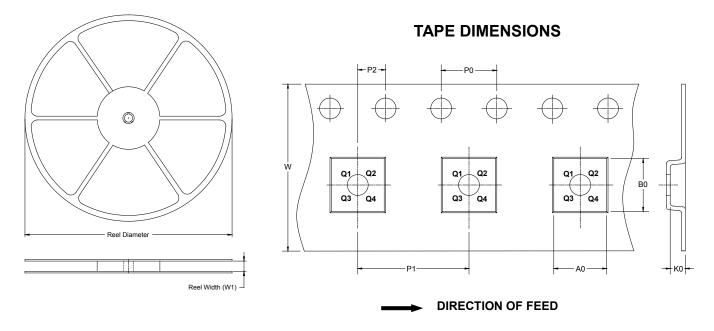





| Symbol | -        | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|----------|------------------|-------------------------|-------|--|
|        | MIN      | MAX              | MIN                     | MAX   |  |
| A      | 1.350    | 1.750            | 0.053                   | 0.069 |  |
| A1     | 0.100    | 0.250            | 0.004                   | 0.010 |  |
| A2     | 1.350    | 1.550            | 0.053                   | 0.061 |  |
| b      | 0.330    | 0.510            | 0.013                   | 0.020 |  |
| с      | 0.170    | 0.250            | 0.006                   | 0.010 |  |
| D      | 4.700    | 5.100            | 0.185                   | 0.200 |  |
| E      | 3.800    | 4.000            | 0.150                   | 0.157 |  |
| E1     | 5.800    | 6.200            | 0.228                   | 0.244 |  |
| e      | 1.27 BSC |                  | 0.050                   | BSC   |  |
| L      | 0.400    | 1.270            | 0.016                   | 0.050 |  |
| θ      | 0°       | 8°               | 0°                      | 8°    |  |

# PACKAGE OUTLINE DIMENSIONS

### TDFN-3×3-8BL

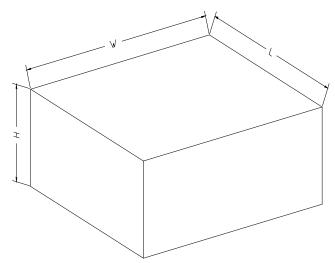



RECOMMENDED LAND PATTERN (Unit: mm)

| Symbol |             | nsions<br>meters | Dimensions<br>In Inches |       |  |
|--------|-------------|------------------|-------------------------|-------|--|
|        | MIN         | MAX              | MIN                     | MAX   |  |
| А      | 0.700       | 0.800            | 0.028                   | 0.031 |  |
| A1     | 0.000       | 0.050            | 0.000                   | 0.002 |  |
| A2     | 0.203       | 3 REF            | 0.008                   | REF   |  |
| D      | 2.900       | 3.100            | 0.114                   | 0.122 |  |
| D1     | 2.300       | 2.500            | 0.091                   | 0.098 |  |
| E      | 2.900       | 3.100            | 0.114                   | 0.122 |  |
| E1     | 1.600       | 1.800            | 0.063                   | 0.071 |  |
| k      | 0.200       | ) MIN            | 0.008                   | 3 MIN |  |
| b      | 0.180       | 0.300            | 0.007                   | 0.012 |  |
| e      | 0.500       | ) TYP            | 0.020                   | ) TYP |  |
| L      | 0.300 0.500 |                  | 0.012                   | 0.020 |  |

# TAPE AND REEL INFORMATION

#### **REEL DIMENSIONS**




NOTE: The picture is only for reference. Please make the object as the standard.

#### **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type | Reel<br>Diameter | Reel Width<br>W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|------------------|--------------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| SOIC-8       | 13″              | 12.4                     | 6.40       | 5.40       | 2.10       | 4.0        | 8.0        | 2.0        | 12.0      | Q1               |
| TDFN-3×3-8BL | 13″              | 12.4                     | 3.35       | 3.35       | 1.13       | 4.0        | 8.0        | 2.0        | 12.0      | Q1               |

### CARTON BOX DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

#### **KEY PARAMETER LIST OF CARTON BOX**

| Reel Type | Length<br>(mm) | Width<br>(mm) | Height<br>(mm) | Pizza/Carton |        |
|-----------|----------------|---------------|----------------|--------------|--------|
| 13″       | 386            | 280           | 370            | 5            | DD0002 |