SGM8557-1/SGM8557-2/SGM8557-3/SGM8557-5 15MHz, High Output Drive, High Precision, Low Noise Operational Amplifiers

GENERAL DESCRIPTION

The SGM8557-1 (single), SGM8557-3 (single with shutdown), SGM8557-2 (dual) and SGM8557-5 (dual with shutdown) high output drive CMOS operational amplifiers feature a peak output current of 240mA, rail-to-rail output capability from a single 2.7V to 5.5V supply. These amplifiers exhibit a high slew rate of 7V/µs and a gain-bandwidth product (GBP) of 15MHz. The SGM8557-3/5 offer a shutdown feature that drives the output low.

The SGM8557-1/2/3/5 offer low input offset voltage, low input offset voltage drift, wide bandwidth and high output drive.

The SGM8557-1 is available in Green SOIC-8, MSOP-8 and SOT-23-5 packages. The SGM8557-2 is available in a Green SOIC-8 package. The SGM8557-3 is available in Green SOIC-8 and SOT-23-6 packages. The SGM8557-5 is available in a Green MSOP-10 package. They operate over an ambient temperature range of -40°C to +125°C.

APPLICATIONS

Portable/Battery-Powered Audio Applications Audio Hands-Free Car Phones (Kits) Laptop/Notebook Computers/TFT Panels Sound Ports/Cards Set-Top Boxes Digital-to-Analog Converter Buffers Transformer/Line Drivers Motor Drivers

FEATURES

- 240mA Output Drive Capability
- Rail-to-Rail Output
- Low Input Offset Voltage: 5µV (MAX)
- Low Input Offset Voltage Drift: 27nV/°C (TYP)
- Low Noise: $22nV/\sqrt{Hz}$ at 1kHz
- Over-Temperature Protection
- Supply Voltage Range: 2.7V to 5.5V
- Quiescent Supply Current: 1.2mA/Amplifier (TYP)
 0.3µA Shutdown Current for SGM8557-3/5 (TYP)
- Gain-Bandwidth Product: 15MHz
- High Slew Rate: 7V/µs
- Voltage Gain (R_L = 2kΩ): 144dB
- Power Supply Rejection Ratio: 120dB
- No Phase Reversal for Overdriven Inputs
- Small Packaging: SGM8557-1 Available in Green SOIC-8, MSOP-8, and SOT-23-5 Packages SGM8557-2 Available in a Green SOIC-8 Package SGM8557-3 Available in Green SOIC-8 and SOT-23-6 Packages SGM8557-5 Available in a Green MSOP-10 Package

TYPICAL OPERATING CIRCUIT

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
	SOIC-8	-40°C to +125°C	SGM8557-1XS8G/TR	SGM 85571XS8 XXXXX	Tape and Reel, 2500
SGM8557-1 SOT-23-5 SOT-23-5		-40°C to +125°C	SGM8557-1XMS8G/TR	SGM85571 XMS8 XXXXX	Tape and Reel, 4000
		-40°C to +125°C	SGM8557-1AXN5G/TR	GG8XX	Tape and Reel, 3000
		-40°C to +125°C	SGM8557-1BXN5G/TR	GCEXX	Tape and Reel, 3000
SGM8557-2	SOIC-8	-40°C to +125°C	SGM8557-2XS8G/TR	SGM 85572XS8 XXXXX	Tape and Reel, 2500
SGM8557-3	SOIC-8	-40°C to +125°C	SGM8557-3XS8G/TR	SGM 85573XS8 XXXXX	Tape and Reel, 2500
	SOT-23-6	-40°C to +125°C	SGM8557-3XN6G/TR	GCFXX	Tape and Reel, 3000
SGM8557-5	MSOP-10	-40°C to +125°C	SGM8557-5XMS10G/TR	SGM85575 XMS10 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XX = Date Code. XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S	6V
All Other Pins (-Vs) - 0	.3V to (+V _S) + 0.3V
Output Short-Circuit Duration to +Vs or -Vs	s10s
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	7000V
MM	400V
CDM	1000V

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range4	0°C to +125°C
Operating Supply Voltage Range	2.7V to 5.5V

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

SGM8557-2 (TOP VIEW) Ουτα 8 +V_s 1 7 -INA 2 оитв 6 3 -INB +INA -Vs 5 4 +INB

MSOP-10

15MHz, High Output Drive, High Precision, Low Noise Operational Amplifiers

ELECTRICAL CHARACTERISTICS

(At T_A = +25°C, Full = -40°C to +125°C, V_S = 2.7V to 5V, -V_S = 0V, V_{CM} = V_S/2, V_{OUT} = V_S/2, R_L = ∞ connected to V_S/2, V_{SHDN} = V_S, unless otherwise noted.)

	CONDITIONS $V_S = 2.7V$ $V_S = 5V$ $V_S = 5V$ $V_S = 2.7V$ $V_S = 5V$ $V_S = 2.7V$, $V_{CM} = V_S/2$ V_S = 2.7V, $V_{CM} = V_S/2$ Inferred from CMRR test $V_S = 2.7V$, $(-V_S) - 0.1V < V_{CM} < (+V_S)$ $V_S = 5V$, $(-V_S) - 0.1V < V_{CM} < (+V_S)$ $V_S = 5V$, $(-V_S) - 0.1V < V_{CM} < (+V_S)$ $V_S = 5V$, $(-V_S) - 0.1V < V_{CM} < (+V_S)$	(s) + 0.1V $R_L = 2k\Omega$	TEMP +25°C +25°C Full +25°C +25°C +25°C +25°C +25°C +25°C Full +25°C Full +25°C Full +25°C Full +25°C Full +25°C Full +25°C	MIN 	TYP 2.4 2.8 27 200 100 100 120	MAX 5 126 130 (+Vs)+0.1	μV nV/°C pA pA V dB	
/ _{OS} /ΔT I _B I _{OS} V _{CM} MRR	$\label{eq:Vs} \begin{array}{l} V_{\rm S} = 5V \\ V_{\rm S} = 2.7V \\ V_{\rm S} = 5V \\ V_{\rm S} = 2.7V, \ V_{\rm CM} = V_{\rm S}/2 \\ V_{\rm S} = 2.7V, \ V_{\rm CM} = V_{\rm S}/2 \\ \hline \\ \mbox{Inferred from CMRR test} \\ V_{\rm S} = 2.7V, \ (-V_{\rm S}) - 0.1V < V_{\rm CM} < (+V_{\rm S}) \\ V_{\rm S} = 5V, \ (-V_{\rm S}) - 0.1V < V_{\rm CM} < (+V_{\rm S}) \\ \hline \\ V_{\rm S} = 2.7V. \end{array}$	(s) + 0.1V $R_L = 2k\Omega$	+25°C Full Full +25°C +25°C +25°C +25°C Full +25°C Full	106 102 106	2.8 27 27 100 100 120	5 126 130	nV/°C pA pA V	
/ _{OS} /ΔT I _B I _{OS} V _{CM} MRR	$\label{eq:Vs} \begin{array}{l} V_{\rm S} = 5V \\ V_{\rm S} = 2.7V \\ V_{\rm S} = 5V \\ V_{\rm S} = 2.7V, \ V_{\rm CM} = V_{\rm S}/2 \\ V_{\rm S} = 2.7V, \ V_{\rm CM} = V_{\rm S}/2 \\ \hline \\ \mbox{Inferred from CMRR test} \\ V_{\rm S} = 2.7V, \ (-V_{\rm S}) - 0.1V < V_{\rm CM} < (+V_{\rm S}) \\ V_{\rm S} = 5V, \ (-V_{\rm S}) - 0.1V < V_{\rm CM} < (+V_{\rm S}) \\ \hline \\ V_{\rm S} = 2.7V. \end{array}$	(s) + 0.1V $R_L = 2k\Omega$	+25°C Full Full +25°C +25°C +25°C +25°C Full +25°C Full	106 102 106	2.8 27 27 100 100 120	5 126 130	nV/°C pA pA V	
I _B Ios V _{CM}	$\label{eq:V_S} \begin{split} & \bigvee_{S} = 2.7 \ V \\ & \bigvee_{S} = 5 \ V \\ & \bigvee_{S} = 2.7 \ V_{CM} = \ V_{S} / 2 \\ & \bigvee_{S} = 2.7 \ V_{CM} = \ V_{S} / 2 \\ & \text{Inferred from CMRR test} \\ & \bigvee_{S} = 2.7 \ V_{,} \ (-V_{S}) - 0.1 \ V < V_{CM} < (+V_{S}) \\ & \bigvee_{S} = 5 \ V_{,} \ (-V_{S}) - 0.1 \ V < V_{CM} < (+V_{S}) \\ & \bigvee_{S} = 2.7 \ V_{,} \ (-V_{S}) - 0.1 \ V < V_{CM} < (+V_{S}) \\ & \bigvee_{S} = 2.7 \ V_{,} \ (-V_{S}) - 0.1 \ V < V_{CM} < (+V_{S}) \\ & \bigvee_{S} = 2.7 \ V_{,} \ (-V_{S}) - 0.1 \ V < V_{CM} < (+V_{S}) \\ & \bigvee_{S} = 2.7 \ V_{,} \ (-V_{S}) - 0.1 \ V < V_{CM} < (+V_{S}) \\ & \bigvee_{S} = 2.7 \ V_{,} \ (-V_{S}) - 0.1 \ V < V_{CM} < (+V_{S}) \\ & \bigvee_{S} = 2.7 \ V_{,} \ (-V_{S}) - 0.1 \ V_{,} \ (-V_{S}) - 0.1 \ V_{,} \ (-V_{S}) \\ & \bigvee_{S} = 2.7 \ V_{,} \ (-V_{S}) - 0.1 \ V_{,} \ (-V_{S}) - 0.1 \ V_{,} \ (-V_{,}) \\ & \bigvee_{S} = 0.1 \ V_{,} \ (-V_{,}) \ ($	(s) + 0.1V $R_L = 2k\Omega$	Full Full +25°C +25°C +25°C Full +25°C Full	106 102 106	27 27 100 100 120	126 130	pA pA V	
I _B Ios V _{CM}	$V_{S} = 5V$ $V_{S} = 2.7V, V_{CM} = V_{S}/2$ $V_{S} = 2.7V, V_{CM} = V_{S}/2$ Inferred from CMRR test $V_{S} = 2.7V, (-V_{S}) - 0.1V < V_{CM} < (+V_{S})$ $V_{S} = 5V, (-V_{S}) - 0.1V < V_{CM} < (+V_{S})$ $V_{S} = 2.7V.$	(s) + 0.1V $R_L = 2k\Omega$	Full +25°C +25°C +25°C +25°C Full +25°C Full	106 102 106	27 100 100 120	130	pA pA V	
I _{os} V _{CM} MRR	$V_{S} = 2.7V, V_{CM} = V_{S}/2$ $V_{S} = 2.7V, V_{CM} = V_{S}/2$ Inferred from CMRR test $V_{S} = 2.7V, (-V_{S}) - 0.1V < V_{CM} < (+V_{S})$ $V_{S} = 5V, (-V_{S}) - 0.1V < V_{CM} < (+V_{S})$ $V_{S} = 2.7V.$	+25°C +25°C +25°C +25°C Full +25°C Full	106 102 106	100 100 120		pA V		
I _{os} V _{CM} MRR	$V_{S} = 2.7V, V_{CM} = V_{S}/2$ Inferred from CMRR test $V_{S} = 2.7V, (-V_{S}) - 0.1V < V_{CM} < (+V_{S})$ $V_{S} = 5V, (-V_{S}) - 0.1V < V_{CM} < (+V_{S})$ $V_{S} = 2.7V.$	(s) + 0.1V $R_L = 2k\Omega$	+25℃ +25℃ +25℃ Full +25℃ Full	106 102 106	100 120	(+V _S)+0.1	pA V	
W _{CM}	Inferred from CMRR test $V_{s} = 2.7V, (-V_{s}) - 0.1V < V_{CM} < (+V_{s})$ $V_{s} = 5V, (-V_{s}) - 0.1V < V_{CM} < (+V_{s})$ $V_{s} = 2.7V.$	(s) + 0.1V $R_L = 2k\Omega$	+25℃ +25℃ Full +25℃ Full	106 102 106	120	(+V _S) + 0.1	V	
MRR	$V_{\rm S} = 2.7V$, $(-V_{\rm S}) - 0.1V < V_{\rm CM} < (+V_{\rm S})$ $V_{\rm S} = 5V$, $(-V_{\rm S}) - 0.1V < V_{\rm CM} < (+V_{\rm S})$ $V_{\rm S} = 2.7V$.	(s) + 0.1V $R_L = 2k\Omega$	+25℃ Full +25℃ Full	106 102 106		(TV _S) T 0.1		
	$V_{\rm S} = 5V$, (-V _S) - 0.1V < $V_{\rm CM}$ < (+V _S)	(s) + 0.1V $R_L = 2k\Omega$	Full +25°C Full	102 106			dB	
	V _S = 2.7V.	$R_L = 2k\Omega$	+25°C Full	106	120		dB	
A _{VOL}	V _S = 2.7V.	$R_L = 2k\Omega$	Full		120			
Avol	V _S = 2.7V, (-V _S) + 0.2V < V _{OUT} < (+V _S) - 0.2V			90				
A _{VOL}	V _S = 2.7V, (-V _S) + 0.2V < V _{OUT} < (+V _S) - 0.2V		+25°C	110	105			
A _{VOL}	$V_{S} = 2.7V,$ (- V_{S}) + 0.2V < V_{OUT} < (+ V_{S}) - 0.2V			112	135			
A _{VOL}	(-vs) + 0.2v < vout < (+vs) - 0.2v	1	Full	110				
A _{VOL}		R _L = 200Ω	+25°C	110	136		- dB	
			Full	107				
	V _S = 5V, (-V _S) + 0.2V < V _{OUT} < (+V _S) - 0.2V	$R_L = 2k\Omega$	+25°C	117	144			
			Full	115				
		R _L = 200Ω	+25°C	110	142			
			Full	108				
	I	T	r			1		
		$R_{L} = 32\Omega$ $R_{L} = 200\Omega$ $R_{L} = 200\Omega$	+25°C		240	300	mV	
			Full			370		
			+25°C		45	60		
	V _S = 2.7V		Full			72		
	·3 2.1 ·		+25°C		5	10		
		11 2132	Full			11		
		I _{OUT} = 10mA	+25°C		60	95		
1		I _{OUT} = 10mA	Full			115		
OUT		P - 320	+25°C		390	485		
		ις_ – 32Ω	Full			580		
		D 0000	+25°C		72	90		
		$R_L = 200\Omega$	Full			110	.,	
	$V_{\rm S} = 5V$		+25°C		8	15	mV	
		$R_L = 2k\Omega$	Full			18		
		I _{OUT} = 10mA	+25°C		60	82		
		I _{OUT} = 10mA				98		
		I	+25°C	92	120			
	V _S = 2.7V		Full	64			-	
Isc					240		mA	
ISC	V _S = 5V		Full			1		
	′ουτ Isc	Vout $V_{\rm S} = 5V$ $V_{\rm S} = 2.7V$ $V_{\rm S} = 2.7V$	$V_{OUT} = 2k\Omega$ $I_{OUT} = 10mA$ $I_{OUT} = 10mA$ $I_{OUT} = 10mA$ $R_{L} = 32\Omega$ $R_{L} = 200\Omega$ $R_{L} = 200\Omega$ $R_{L} = 2k\Omega$ $I_{OUT} = 10mA$ $I_{OUT} = 10mA$ $I_{OUT} = 10mA$ $I_{OUT} = 10mA$	$V_{OUT} = 10 \text{m} \text{A} + 25^{\circ}\text{C} \\ \hline \text{Full} \\ \hline I_{OUT} = 10 \text{m} \text{A} + 25^{\circ}\text{C} \\ \hline I_{OUT} = 10 \text{m} \text{A} + 25^{\circ}\text{C} \\ \hline I_{OUT} = 10 \text{m} \text{A} + 25^{\circ}\text{C} \\ \hline \text{Full} \\ \hline \text{R}_{L} = 32\Omega \\ \hline \text{Full} \\ \hline \text{R}_{L} = 20\Omega\Omega \\ \hline \text{Full} \\ \hline \text{R}_{L} = 2k\Omega \\ \hline \text{Full} \\ \hline \text{R}_{L} = 2k\Omega \\ \hline \text{Full} \\ \hline \text{I}_{OUT} = 10 \text{m} \text{A} + 25^{\circ}\text{C} \\ \hline \text{Full} \\ \hline \text{I}_{OUT} = 10 \text{m} \text{A} + 25^{\circ}\text{C} \\ \hline \text{Full} \\ \hline \text{I}_{OUT} = 10 \text{m} \text{A} \\ \hline \text{Full} \\ \hline \text{I}_{OUT} = 10 \text{m} \text{A} \\ \hline \text{Full} \\ \hline \text{V}_{S} = 5 \text{V} \\ \hline \end{array}$	$V_{OUT} = 10 \text{mA} + 25^{\circ}\text{C} = \frac{+25^{\circ}\text{C}}{\text{Full}} = 1000000000000000000000000000000000000$	$V_{OUT} = 10 \text{ M} + 25^{\circ}\text{C} = 5$ $R_{L} = 2k\Omega = \frac{+25^{\circ}\text{C}}{\text{Full}} = \frac{5}{\text{Full}} = 1000000000000000000000000000000000000$	$V_{OUT} = 10 \text{ M} + 25^{\circ}\text{C} = 5 = 10$ $F_{L} = 2k\Omega = \frac{+25^{\circ}\text{C}}{\text{Full}} = 111$ $I_{OUT} = 10\text{ MA} + 25^{\circ}\text{C} = 60 = 95$ $I_{OUT} = 10\text{ MA} = 10\text{ MA} = 115$ $R_{L} = 32\Omega = \frac{+25^{\circ}\text{C}}{\text{Full}} = \frac{390}{\text{Full}} = \frac{485}{\text{Full}} = \frac{115}{580}$ $R_{L} = 32\Omega = \frac{+25^{\circ}\text{C}}{\text{Full}} = \frac{390}{100} = \frac{485}{580}$ $R_{L} = 200\Omega = \frac{+25^{\circ}\text{C}}{\text{Full}} = \frac{110}{110}$ $R_{L} = 2k\Omega = \frac{+25^{\circ}\text{C}}{\text{Full}} = \frac{110}{110} = \frac{110}{110}$ $R_{L} = 2k\Omega = \frac{+25^{\circ}\text{C}}{182} = \frac{8}{15} = \frac{110}{100}$ $R_{L} = 2k\Omega = \frac{110}{100} = 110$	

ELECTRICAL CHARACTERISTICS (continued)

(At $T_A = +25^{\circ}C$, Full = -40°C to +125°C, $V_S = 2.7V$ to 5V, $-V_S = 0V$, $V_{CM} = V_S/2$, $V_{OUT} = V_S/2$, $R_L = \infty$ connected to $V_S/2$, $V_{\overline{SHDN}} = V_S$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	ТҮР	MAX	UNITS
Power-Down Disable (SGM8557-3/5	Only)	•					
Shutdown Supply Current/Amplifier	$I_{Q(\overline{SHDN})}$	$V_{\overline{SHDN}} = 0V, R_L = \infty, V_S = 5V$	+25°C		0.3	2	μA
	VIL	Shutdown mode	+25°C			0.8	V
SHDN Logic Threshold	V _{IH}	Normal mode	+25°C	(+V _S) × 0.57			
SHDN Input Bias Current		$-V_{\rm S} < V_{\overline{\rm SHDN}} < V_{\rm S}$	+25°C		50		pА
Shutdown Output Impedance	Rout	V _{SHDN} = 0V	+25°C		10		Ω
Output Voltage in Shutdown	$V_{\text{OUT}(\overline{\text{SHDN}})}$	$V_{\overline{SHDN}} = 0V, R_L = 200\Omega$	+25°C		70		mV
Power Supply	•	•					•
Supply Voltage Range	Vs	Inferred from PSRR test	+25°C	2.7		5.5	V
	5055		+25°C	102	120		
Power Supply Rejection Ratio	PSRR		Full	94			dB
	Ι _Q	$V_{\rm S}$ = 2.7V, $V_{\rm CM}$ = $V_{\rm S}/2$	+25°C		1.15 1.62		
Quiescent Supply Current/Amplifier			+25°C		1.15	1.65	mA
		$V_{\rm S}$ = 5V, $V_{\rm CM}$ = $V_{\rm S}/2$	Full			2.15	
Dynamic Performance	•	•					•
Gain-Bandwidth Product	GBP	$V_{CM} = V_S/2$	+25°C		15		MHz
Slew Rate	SR		+25°C		7		V/µs
Total Harmonic Distortion + Noise	THD+N	V _S = 5V, R _L = 32Ω, f = 10kHz, V _{OUT} = 2V _{P-P} , A _{VCL} = 1V/V	+25°C		0.008		%
Input Capacitance	C _{IN}		+25°C		20		pF
Channel-to-Channel Isolation		$f = 1 \text{kHz}, R_L = 100 \text{k}\Omega$	+25°C		-125		dB
Capacitive-Load Stability		A _{VCL} = 1V/V, no sustained oscillations	+25°C		780		pF
Noise Performance	•	•					•
		f = 1kHz	+25°C		22		<u> </u>
Input Voltage Noise Density	en	f = 10kHz	+25°C		20		nV/√Hz
Input Voltage Noise		f = 0.1Hz to 10Hz	+25°C		0.5		μV _{P-P}

TYPICAL PERFORMANCE CHARACTERISTICS

At T_A = +25°C, V_S = 5.0V, unless otherwise noted.

8

10

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At $T_A = +25^{\circ}C$, $V_S = 5.0V$, unless otherwise noted.

4 0 0 7 0

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = 5.0V, unless otherwise noted.

Offset Voltage (µV)

0 0 4

Offset Voltage Production Distribution

APPLICATION INFORMATION

60mW Single-Supply Stereo Headphone Driver

The SGM8557-2 can be used as a single-supply, stereo headphone driver. The circuit shown in Figure 1 can deliver 60mW per channel with 1% distortion from a single 5V supply.

Figure 1. Circuit Example: A Single-Supply, Stereo Headphone Driver

The input capacitor (C_{IN}), in conjunction with R_{IN} , forms a high-pass filter that removes the DC bias from the incoming signal. The -3dB point of the high-pass filter is given by:

$$f_{-3dB} = \frac{1}{2\pi R_{IN}C_{IN}}$$

Choose gain-setting resistors R_{IN} and R_F according to the amount of desired gain, keeping in mind the maximum output amplitude. The output coupling capacitor (C_{OUT}), blocks the DC component of the amplifier output, preventing DC current flowing to the load. The output capacitor and the load impedance form a high-pass filer with the -3dB point determined by:

$$f_{-3dB} = \frac{1}{2\pi R_L C_{OUT}}$$

For a 32Ω load, a 100μ F aluminum electrolytic capacitor gives a low-frequency pole at 50Hz.

Rail-to-Rail Output Stage

The minimum output is within millivolts of ground for single-supply operation, where the load is referenced to ground $(-V_s)$. The maximum output voltage swing is load dependent.

Observe the Absolute Maximum Ratings for power dissipation and output short-circuit duration because the output current can exceed 240mA.

Bridge Amplifier

The circuit shown in Figure 2 uses an SGM8557-2 to implement a 3V, 200mW amplifier suitable for use in size-constrained applications. This configuration eliminates the need for the large coupling capacitor required by the single operational amplifier speaker driver when single-supply operation is necessary. Voltage gain is set to 10V/V; however, it can be changed by adjusting the 82k Ω resistor value.

Figure 2. SGM8557-2 Bridge Amplifier for 200mW at 3V

APPLICATIONS INFORMATION (continued)

Input Capacitance

One consequence of the parallel-connected differential input stages is a relatively large input capacitance C_{IN} (20pF TYP). This introduces a pole at frequency $(2\pi R'C_{IN})^{-1}$, where R' is the parallel combination of the gain-setting resistors for the inverting or non-inverting amplifier configuration (Figure 3). If the pole frequency is less than or comparable to the unity-gain bandwidth (15MHz), the phase margin is reduced, and the amplifier exhibits degraded AC performance through either ringing in the step response or sustained oscillations. The pole frequency is 10MHz when R' = $2k\Omega$. To maximize stability, R' << $2k\Omega$ is recommended.

To improve step response when R' > $2k\Omega$, connect small capacitor C_F between the inverting input and output. Choose C_F as follows:

$C_{F} = 8(R/R_{F}) [pF]$

where R_F is the feedback resistor and R is the gain-setting resistor (Figure 3).

Figure 3. Inverting and Non-Inverting Amplifiers with Feedback Compensation

Driving Capacitive Loads

The SGM8557-1/2/3/5 have a high tolerance for capacitive loads. They are stable with capacitive loads up to 780pF. Figure 4 shows the transient response with capacitive loads (780pF), with and without the addition of an isolation resistor in series with the output. Figure 5 shows a typical non-inverting capacitive-load-driving circuit in the unity-gain configuration.

The resistor improves the circuit's phase margin by isolating the load capacitor from the operational amplifier's output.

Figure 4. Small-Signal Transient Response with Capacitive Load

Figure 5. Capacitive-Load-Driving Circuit

APPLICATIONS INFORMATION (continued)

Power-Up and Shutdown Modes

The SGM8557-3/5 have a shutdown option. When the shutdown pin (\overline{SHDN}) is pulled low, supply current drops to 0.3µA per amplifier (V_S = 5V), the amplifiers are disabled, and their outputs are driven to -V_S. Since the outputs are actively driven to -V_S in shutdown, any pull-up resistor on the output causes a current drain from the supply. Pulling SHDN high enables the amplifier. In the dual SGM8557-5, the two amplifiers shut down independently. Figure 6 shows the SGM8557-3's output voltage to a shutdown pulse. The SGM8557-1/2/3/5 typically settle within 5µs after power-up.

When exiting shutdown, there is a 6µs delay before the amplifier's output becomes active (Figure 6).

Figure 6. Shutdown Output Voltage Enable/Disable

Power Supplies and Layout

The SGM8557-1/2/3/5 can operate from a single 2.7V to 5.5V supply, or from dual \pm 1.35V to \pm 2.75V supplies. For single-supply operation, bypass the power supply with a 0.1µF ceramic capacitor. For dual-supply operation, bypass each supply to ground. Good layout improves performance by decreasing the amount of stray capacitance at the operational amplifiers' inputs and outputs. Decrease stray capacitance by placing external components close to the operational amplifiers' pins, minimizing trace and lead lengths.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

OCTOBER 2019 – REV.A.3 to REV.A.4	Page
Updated Marking Information section	2
JANUARY 2019 – REV.A.2 to REV.A.3	Page
Changed Figure 2	
DECEMBER 2017 – REV.A.1 to REV.A.2	Page
Added Typical Performance Characteristics	
NOVEMBER 2017 – REV.A to REV.A.1	Page
Changed Electrical Characteristics section	
Changed Typical Performance Characteristics section	
Changes from Original (DECEMBER 2016) to REV.A	Page
Changed from product preview to production data	All

SOT-23-5

Symbol	-	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
А	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
С	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
E	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104	0.116		
e	0.950	BSC	0.037 BSC			
e1	1.900	1.900 BSC		BSC		
L	0.300	0.600	0.012	0.024		
θ	0°	8°	0°	8°		

SOT-23-6

Symbol	-	nsions meters	Dimensions In Inches			
	MIN MAX		MIN	MAX		
A	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
С	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
E	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104	0.116		
е	0.950	BSC	0.037 BSC			
e1	1.900 BSC		0.075	BSC		
L	0.300	0.600	0.012	0.024		
θ	0°	8°	0°	8°		

SOIC-8

Symbol	-	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A	1.350	1.750	0.053	0.069		
A1	0.100	0.250	0.004	0.010		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
с	0.170	0.250	0.006	0.010		
D	4.700	5.100	0.185	0.200		
E	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
e	1.27 BSC		0.050	BSC		
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		

MSOP-8

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.650	0.650 BSC		BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

MSOP-10

Symbol	-	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A	0.820	1.100	0.032	0.043		
A1	0.020	0.150	0.001	0.006		
A2	0.750	0.950	0.030	0.037		
b	0.180	0.280	0.007	0.011		
С	0.090	0.230	0.004	0.009		
D	2.900	3.100	0.114	0.122		
E	2.900	3.100	0.114	0.122		
E1	4.750	5.050	0.187	0.199		
e	0.500	0.500 BSC		BSC		
L	0.400	0.800	0.016	0.031		
θ	0°	6°	0°	6°		

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-5	7″	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3
SOT-23-6	7″	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3
SOIC-8	13″	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
MSOP-8	13″	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1
MSOP-10	13″	12.4	5.20	3.30	1.20	4.0	8.0	2.0	12.0	Q1

KEY PARAMETER LIST OF TAPE AND REEL

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	
13″	386	280	370	5	DD0002