ECOSPARK[®] Ignition IGBT

300 mJ, 400 V, N-Channel Ignition IGBT

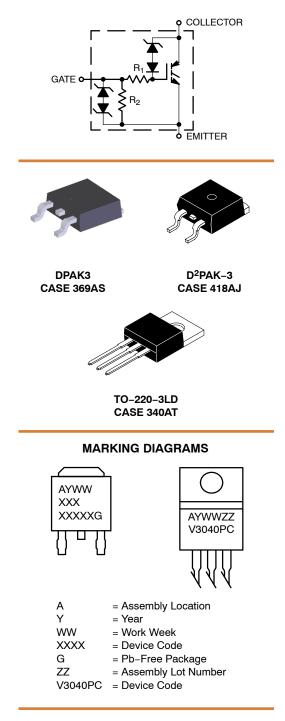
ISL9V3040x3ST-F085C

Features

- SCIS Energy = 300 mJ at $T_J = 25^{\circ}C$
- Logic Level Gate Drive
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Automotive Ignition Coil Driver Circuits
- High Current Ignition System
- Coil on Plug Application


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Value	Unit
BV _{CER}	Collector to Emitter Breakdown Voltage (IC = 1 mA)	400	V
BV _{ECS}	Emitter to Collector Voltage – Reverse Battery Condition (IC = 10 mA)	24	V
E _{SCIS25}	ISCIS = 14.2 A, L = 3.0 mHy, RGE = 1 KΩ, T _C = 25°C (Note 1)	300	mJ
E _{SCIS150}	ISCIS = 10.6 A, L = 3.0 mHy, RGE = 1 KΩ, T _C = 150°C (Note 2)	170	mJ
IC25	Collector Current Continuous at VGE = 4.0 V, T _C = 25°C	21	A
IC110	Collector Current Continuous at VGE = 4.0 V, T _C = 110°C	17	A
V _{GEM}	Gate to Emitter Voltage Continuous	±10	V
PD	Power Dissipation Total, $T_C = 25^{\circ}C$	150	W
	Power Dissipation Derating, $T_C > 25^{\circ}C$	1	W/°C
T _J , T _{STG}	Operating Junction and Storage Temperature	–55 to +175	°C
TL	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	300	°C
T _{PKG}	Reflow Soldering according to JESD020C	260	°C
ESD	HBM–Electrostatic Discharge Voltage at 100 pF, 1500 Ω	4	kV
	CDM–Electrostatic Discharge Voltage at 1 Ω	2	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Self clamped inductive Switching Energy (ESCIS25) of 300 mJ is based on the test conditions that is starting $T_J = 25^{\circ}$ C, L = 3 mHy, ISCIS = 14.2 A, VCC = 100 V during inductor charging and VCC = 0 V during time in clamp.

2. Self Clamped inductive Switching Energy (ESCIS150) of 170 mJ is based on the test conditions that is starting $T_J = 150^{\circ}$ C, L = 3mHy, ISCIS = 10.6 A, VCC = 100 V during inductor charging and VCC = 0 V during time in clamp.

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

THERMAL RESISTANCE RATINGS

Characteristic	Symbol	Мах	Units
Junction-to-Case - Steady State (Drain)		1	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Symbol	Parameter	Test Conditions		Min	Тур.	Max.	Units
OFF CHARA	ACTERISTICS						
BV _{CER}	Collector to Emitter Breakdown Voltage	I_{CE} = 2 mA, V_{GE} = 0 V, R _{GE} = 1 k Ω , T _J = -40 to 150°C		370	400	430	V
BV _{CES}	Collector to Emitter Breakdown Voltage	$I_{CE} = 10 \text{ mA}, V_{GE} = 0 \text{ V}, R_{GE} = 0, T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		390	420	450	V
BV _{ECS}	Emitter to Collector Breakdown Voltage	I_{CE} = -75 mA, V _{GE} = 0 V, T _J = 25°C		30	-	_	V
BV _{GES}	Gate to Emitter Breakdown Voltage	$I_{GES} = \pm 2 \text{ mA}$		±12	±14	-	V
I _{CER}	Collector to Emitter Leakage Current	V _{CE} = 175 V	$T_J = 25^{\circ}C$	-	-	25	μA
		$R_{GE} = 1 \ k\Omega$	$T_J = 150^{\circ}C$	-	-	1	mA
I _{ECS}	Emitter to Collector Leakage Current	V _{EC} = 24 V	$T_J = 25^{\circ}C$	-	-	1	mA
			$T_J = 150^{\circ}C$	-	-	40	
R ₁	Series Gate Resistance			-	70	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	26K	Ω
ON CHARA	CTERISTICS						
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_{CE} = 6 \text{ A}, V_{GE} = 4 \text{ V}, T_{J} = 25^{\circ}\text{C}$		_	1.25	1.65	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 10 A, V_{GE} = 4.5 V, T_{J} = 150°C		-	1.58	1.80	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 15 A, V_{GE} = 4.5 V, T_{J} = 150°C		-	1.90	2.20	V
DYNAMIC C	HARACTERISTICS	•		-		•	
Q _{G(ON)}	Gate Charge	I_{CE} = 10 A, V_{CE} = 12 V, V_{GE} = 5 V		-	17	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage	I _{CE} = 1 mA V _{CE} = V _{GE}	$T_J = 25^{\circ}C$	1.3	-	2.2	V
			T _J = 150°C	0.75	-	1.8	1
V _{GEP}	Gate to Emitter Plateau Voltage	V _{CE} = 12 V, I _{CE} = 10 A		-	3.0	-	V
SWITCHING	CHARACTERISTICS						
td _{(ON)R}	Current Turn-On Delay Time-Resistive			_	0.7	4	μs
t _{rR}	Current Rise Time-Resistive			-	2.1	7	1
td _{(OFF)L}	Current Turn-Off Delay Time-Inductive	V_{CE} = 300 V, L = 1 mH, V_{GE} = 5 V, R _G = 470 Ω, I_{CE} = 6.5 A, T _J = 25°C		-	4.8	15	
t _{fL}	Current Fall Time-Inductive			_	2.8	15	1
-	1			I	1	1	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

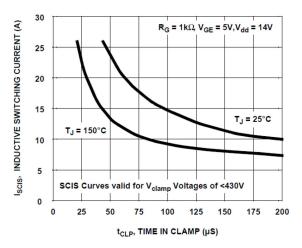


Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp

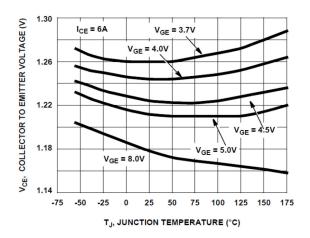


Figure 3. Collector to Emitter On–State Voltage vs. Junction Temperature

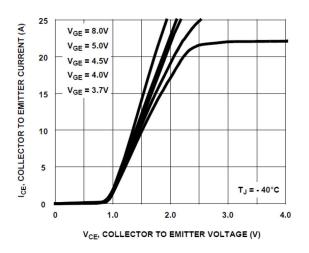


Figure 5. Collector to Emitter On–State Voltage vs. Collector Current

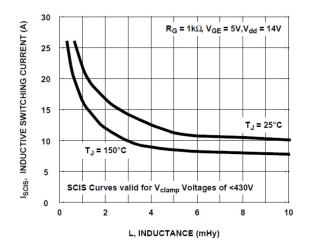


Figure 2. Self Clamped Inductive Switching Current vs. Inductance

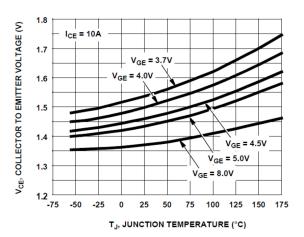


Figure 4. Collector to Emitter On–State Voltage vs. Junction Temperature

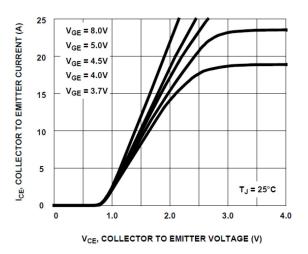


Figure 6. Collector to Emitter On–State Voltage vs. Collector Current

TYPICAL CHARACTERISTICS (continued)

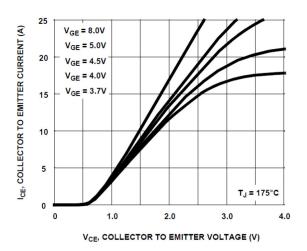


Figure 7. Collector to Emitter On–State Voltage vs. Collector Current

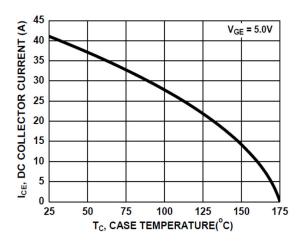


Figure 9. DC Collector Current vs. Case Temperature

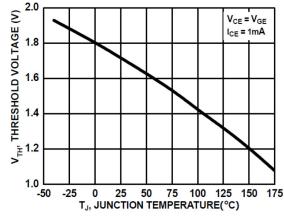
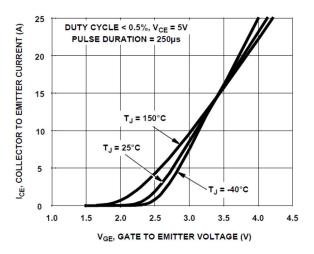



Figure 11. Threshold Voltage vs. Junction Temperature

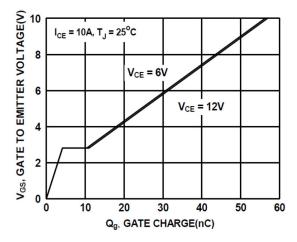
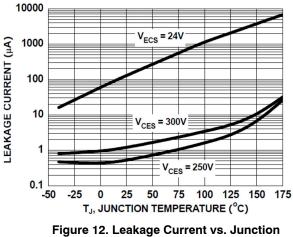



Figure 10. Gate Charge

Temperature

TYPICAL CHARACTERISTICS (continued)

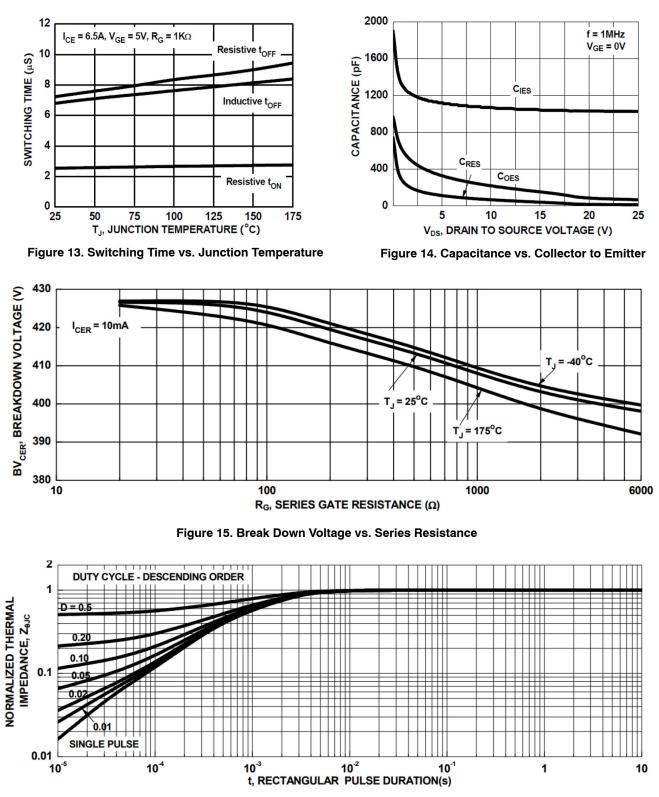


Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case

TEST CIRCUIT AND WAVEFORMS

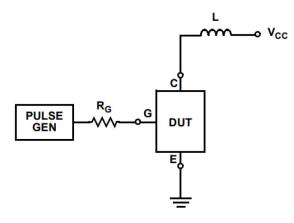


Figure 17. Inductive Switching Test Circuit



Figure 18. t_{ON} and t_{OFF} Switching Test Circuit

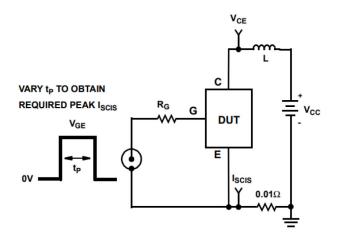


Figure 19. Energy Test Circuit

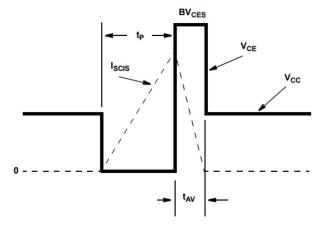
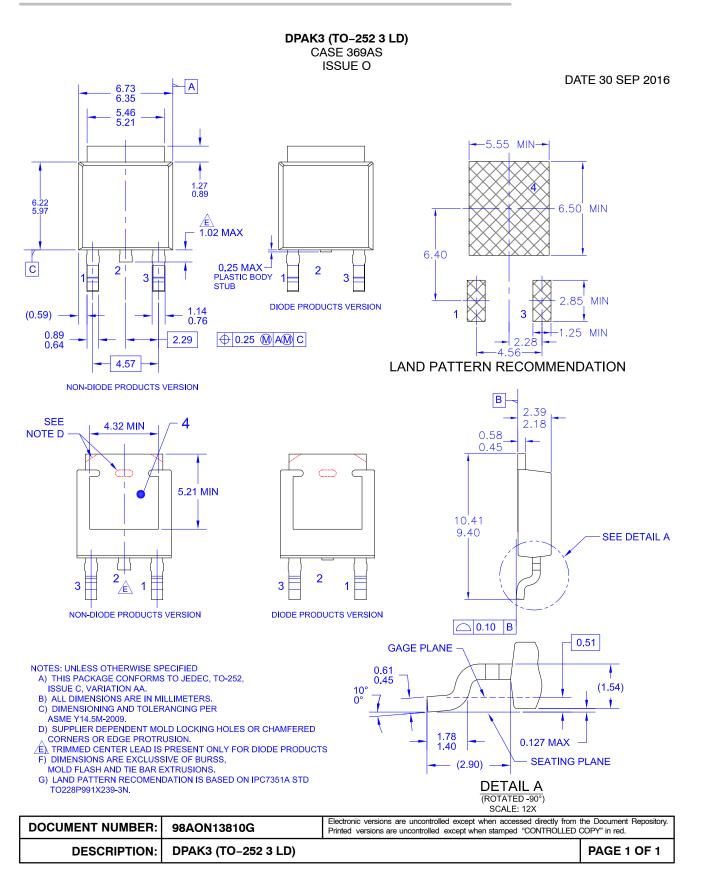


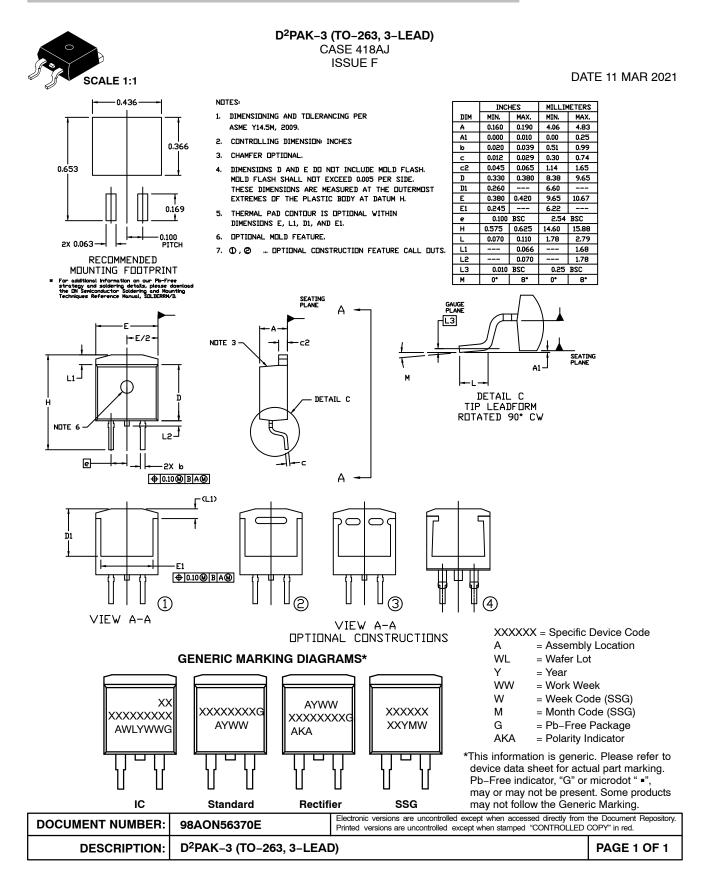
Figure 20. Energy Waveforms

PACKAGE MARKING AND ORDERING INFORMATION


Device	Package	Shipping [†]
ISL9V3040D3ST-F085C	DPAK (Pb-Free)	2500 Units/Tape & Reel
ISL9V3040S3ST-F085C	D2PAK (Pb-Free)	800 Units/Tape & Reel
ISL9V3040P3-F085C	TO220 (Pb-Free)	50 Units/Tube

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ECOSPARK is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.


MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

TO-220-3LD CASE 340AT **ISSUE A** DATE 03 OCT 2017 SUPPLIER "B" PACKAGE SHAPE Ø4.00 3.50 10.67 9.65 SUPPLIER "A" PACKAGE Scale 1:1 SHAPE 3.40 2.50 16.30 13.90 IF PRESENT, SEE NOTE "D" -A 16.51 15.42 9.40 8.13 3 1 2 [2.46] 4.10 2.70 С 1 14.04 12.70 2.13 FRONT VIEWS 4.70 4.00 1.62 1.42 1.62 1.10 2.67 2.40 - "A1" SEE NOTE "F" 1.00 8.65 7.59 5° 3° 5° 3° 6.69 6.06 OPTIONAL CHAMFER A 14.30 11.50 щm m щ []] \ominus 0 NOTE "H" BOTTOM VIEW NOTES: A) REFERENCE JEDEC, TO-220, VARIATION AB B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS COMMON TO ALL PACKAGE SUPPLIERS EXCEPT WHERE NOTED []. D) LOCATION OF MOLDED FEATURE MAY VARY 3 2 1 (LOWER LEFT CORNER, LOWER CENTER AND CENTER OF THE PACKAGE) E DOES NOT COMPLY JEDEC STANDARD VALUE. F) "A1" DIMENSIONS AS BELOW: SINGLE GAUGE = 0.51 - 0.61 DUAL GAUGE = 1.10 - 1.45 RESENCE IS SUPPLIER DEPENDENT H) SUPPLIER DEPENDENT MOLD LOCKING HOLES IN HEATSINK. 0.60 0.36 2.85 **BACK VIEW** SIDE VIEW Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DOCUMENT NUMBER:** 98AON13818G **DESCRIPTION:** TO-220-3LD PAGE 1 OF 1

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

