

TMI8262 Dual-Bridge Motor Controller IC

FEATURES

- . 8-V to 45-V Operating Supply Voltage Range
- . 1.6-A Maximum Drive Current at 24 V and $$T_A$=25\,^{\circ}{\rm C}$$
- . Dual H-Bridge Current Control Motor
 - Drive a Bipolar Stepper or Two DC Motors
 - Four Level Winding Current Control
- Multiple Decay Modes
 - Mixed Decay
 - Slow Decay
 - Fast Decay
- Industry Standard Parallel Digital Control Interface
- . Low Current Sleep Mode
- Built In 3.3-V Reference Output Small Package
 and Footprint
- . Protection Features
 - Overcurrent Protection (OCP)
 - Thermal Shutdown (TSD)
 - VM Undervoltage Lockout (UVLO)
 - Fault Condition Indication Pin (nFAULT)
- . Small Packages
 - TMI8262: HTSSOP28
 - TMI8262Q: QFN5x5-28

APPLICATIONS

- . Automatic Teller Machines
- . Video Security Cameras
- Printers and Scanners
- Office Automation Machines
- Gaming Machines
- Factory Automation

GENERAL DESCRIPTION

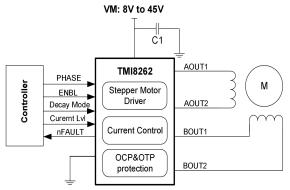
The TMI8262 provides an integrated motor driver solution for printers, scanners, and other automated equipment applications. The device has two H-bridge drivers, and can drive a bipolar stepper motor or two DC motors. The output driver block for each consists of N-channel power MOSFET's configured as full H-bridges to drive the motor windings. The TMI8262 is capable of driving up to 1.6-A of output current.

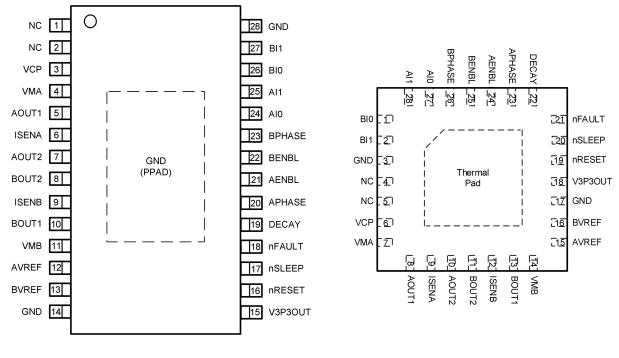
A simple parallel digital control interface is compatible with industry-standard devices. Decay mode is programmable.

Internal shutdown functions are provided for over current protection, short circuit protection, under voltage lockout and overtemperature.

The TMI8262 and TMI8262Q which comply with ROHS specifications, and the lead frame is 100% lead-free.

TYPICAL APPILCATION




Figure 1. Basic Application Circuit

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Min	Max	Unit
Power supply voltage (VM)	-0.3	48	V
Power supply ramp rate (VMx)		1	V/µs
Digital pin voltage	-0.5	7	V
Reference input pin voltage (VREF)	-0.3	4	V
Continuous motor drive output current	0	1.6	A
Operating ambient temperature	-40	85	°C
Operating virtual junction temperature	-40	150	°C
Storage temperature	-60	150	°C

PACKAGE/ORDER INFORMATION

HTSSOP28(Top view)

QFN5x5-28(Top view)

TMI8262/XXXXX (TMI8262: Device Code, XXXXX: Inside Code) for TMI8262 TMI8262Q/XXXXX (TMI8262Q: Device Code, XXXXX: Inside Code) for TMI8262Q

Part Number	Package	Top mark	Quantity/ Reel
TMI8262	HTSSOP28	TMI8262	4,500
11110202	П1330Р20	XXXXX	4,500
TMI0262O		TMI8262Q	E 000
TMI8262Q	QFN5x5-28	XXXXX	5,000

The TMI8262 and TMI8262Q devices are Pb-free and RoHS compliant.

PIN FUNCTIONS

Pin			Eunction		
QFN	HTSSOP	Name	Function		
3、17	14、28	GND	Device ground.		
7	4	VMA	Bridge A power supply, Connect a 0.1μ F bypass capacitor to ground, as well as a sufficient bulk capacitance rated for VM.		
14	11	VMB	Bridge B power supply. Connect a 0.1μ F bypass capacitor to ground, as well as a sufficient bulk capacitance rated for VM.		
18	15	V3P3OUT	3.3V regulator output.		
4、5	1、2	NC	Not connected.		
6	3	VCP	High-side gate drive voltage. Connect a 0.1μ F ceramic capacitor and 1 -M Ω resistor to VM.		
24	21	AENBL	Bridge A enable. Logic high to enable bridge A.		
23	20	APHASE	Bridge A phase (direction). Logic high sets AOUT1 high, AOUT2 low.		
27	24	AI0	Bridge A current set. Sets bridge A current: 00 = 100%,		
28	25	Al1	01 = 71%, 10 = 38%, 11 = 0.		
25	22	BENBL	Bridge B enable. Logic high to enable bridge B.		
26	23	BPHASE	Bridge B phase (direction). Logic high sets BOUT1 high, BOUT2 low.		
1	26	BI0	Bridge B current set. Sets bridge B current: 00 = 100%,		
2	27	BI1	01 = 71%, 10 = 38%, 11 = 0.		
22	19	DECAY	Decay mode. Low = slow decay, open = mixed decay, high = fast decay.		
19	16	nRESET	Reset input. Active-low reset input initializes internal logic and disables the H-bridge outputs.		
20	17	nSLEEP	Sleep mode input. Logic high to enable device, logic low to enter low-power sleep mode.		
15	12	AVREF	Bridge A current set reference input.		
16	13	BVREF	Bridge B current set reference input.		
21	18	nFAULT	Fault. Logic low when in fault condition (overtemp, overcurrent).		
9	6	ISENA	Bridge A ground / Isense. Connect to current sense resistor for bridge A.		
12	9	ISENB	Bridge B ground / Isense. Connect to current sense resistor for bridge B.		
8	5	AOUT1	Bridge A output 1.		

PIN FUNCTIONS(Continued)

	Pin		Eurotion		
QFN	HTSSOP	Name	Function		
10	7	AOUT2	Bridge A output 2.		
13	10	BOUT1	Bridge B output 1.		
11	8	BOUT2	Bridge B output 2.		

ESD RATING

ltems	Description	Value	Unit
V _{ESD}	Human Body Model for all pins	±2000	V

JEDEC specification JS-001

RECOMMENDED OPERATING CONDITIONS

Items	Description		Max	Unit
VM	Power supply voltage range	8.0	45	V
VREF	VREF input voltage	1	3.5	V
IV3P3	V3P3OUT load current		10	mA

(1) All VM pins must be connected to the same supply voltage.

(2) Operational at VREF between 0V and 1V, but accuracy is degraded.

ELECTRICAL CHARACTERISTICS

T_A = 25°C, over recommended operating conditions (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY						
VM operating supply current	І∨м	VM = 24 V, f _{PWM} < 50 kHz		3	5	mA
VM sleep mode supply current	I _{VMQ}	VM = 24V		0.05	1	μA
VM undervoltage lockout voltage	V _{UVLO}	VM rising		6.5	8	V
V3P3OUT voltage	V _{3P3}	IOUT = 0 to 1 mA, VM = 24 V, T _J = 25°C	3.18	3.30	3.40	V
vor ocor volago		IOUT = 0 to 1 mA	3.10	3.30	3.50	V
	V _{3P3UVLO}			2		V
LOGIC-LEVEL INPUTS	1	1		1		
Input low voltage	VIL			0.7	0.8	V
Input high voltage	VIH		1.8		5.25	V
Input hysteresis	V _{HYS}			0.45		V
Input low current	IIL	VIN = 0V	-20		20	μA
Input high current	IIH	VIN = 3.3V		35	50	μA
nFAULT OUTPUT (OPEN-I		PUT)				
output low voltage	V _{OL}	I ₀ = 5 mA			0.4	V
output high leakage current	Іон	V ₀ = 3.3 V			1	μA
DECAY INPUT	1					
Input low threshold voltage	VIL	For slow decay mode	0		1.2	V
Input high threshold voltage	VIH	For fast decay mode	1.8			V
Input current		Decay = 5V			±45	μA
H-BRIDGE FETS			I	I		
HS FET on resistance	R _{DS(ON)}	VM = 24 V, I ₀ = 1 A		0.45		Ω
LS FET on resistance	R _{DS(ON)}	VM = 24 V, I ₀ = 1 A		0.45		Ω
Off-state leakage current	IOFF		-1		1	μA
MOTOR DRIVER			<u> </u>	1		
Internal PWM frequency	f _{PWM}			50		kHz
Current sense blanking time	t BLANK			3.5		μs
Rise time	t _R	VM = 24 V	18		70	ns
Fall time	t _F	VM = 24 V	25		40	ns
Dead time	tDEAD			400		ns
Input deglitch time	t _{DEG}		1.7		2.5	μs

ELECTRICAL CHARACTERISTICS (Continued)

$T_A = 25^{\circ}C$, over recommended operating conditions (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CURRENT CONTROL						
xVREF input current	IREF	xVREF = 3.3 V	-3		3	μA
	VTRIP	xVREF = 3.3 V , I _{SENSE} = 0.5Ω , 100% current setting	630	660	680	mV
xISENSE trip voltage		xVREF = 3.3 V , I _{SENSE} = 0.5Ω , 71% current setting	445	468	480	mV
		xVREF = 3.3 V , I _{SENSE} = 0.5Ω , 38% current setting	230	251	265	mV
Current sense amplifier gain	AISENSE	Reference only		5		V/V
PROTECTION CIRCUITS						
Overcurrent protection trip level	IOCP			3		А
Overcurrent deglitch time	t _{OCP}			2.5		μs
Overcurrent retry time	tRETRY			2		ms
Thermal shutdown temperature	T _{SD}		150	170	180	°C

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. **Note 2:** T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + P_D \ge \theta_{JA}$. The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_{D (MAX)} = (T_{J(MAX)}-T_A)/\theta_{JA}$.

Note 3: twake applies when the device initially powers up, and when it exits sleep mode.

Note 4: Thermal shutdown threshold and hysteresis are guaranteed by design.

OPERATION

Overview

The TMI8262 is an integrated motor driver solution for a bipolar stepper motor or two brushed DC motors. The device integrates two NMOS H-bridges, current sense, regulation circuitry, and detailed fault detection. The TMI8262 can be powered with a supply voltage between 8 V and 45 V and is capable of providing an output current up to 1.6 A full-scale.

A PHASE/ENBL interface allows for simple interfacing to the controller circuit. The winding current control allows the external controller to adjust the regulated current that is provided to the motor. The current regulation is highly configurable, with three decay modes of operation. Fast, slow, and mixed decay can be selected depending on the application requirements. A low-power sleep mode is included which allows the system to save power when not driving the motor.

A variety of integrated protection features protect the device in the case of a system fault. These include undervoltage lockout (UVLO), charge pump undervoltage (CPUV), overcurrent protection (OCP), and overtemperature shutdown (TSD). Fault conditions are indicated on the nFAULT pin.

Control Modes

TMI8262 control drive mode is PH/EN control mode. The xPHASE input pin is used to control the direction of current, The xENBL input pins enable the H-bridge outputs when active high. The truth table for PH/EN mode is shown in Table 1.

xENBL	xPHASE	xOUT1	xOUT2						
0	Х	Z	Z						
1	0	L	Н						
1	1	Н	L						

Table 1. H-Bridge Control Logic

Current Regulation

In TMI8262, motor peak current can be limited by the analog reference input VREF and the resistance of external sense resistor on the ISEN pin approximately according to the below equation:

$$I_{CHOP} (A) = \frac{V_{REF} (V)}{A_V \times R_{ISEN} (\Omega)} = \frac{V_{REF} (V)}{5 \times R_{ISEN} (\Omega)}$$

For example:

If VREF = 3.3 V and a RISEN = 0.5Ω , the TMI8262 full-scale (100%) chopping current will be 1.32A; The two input pins (xI1 and xI0) of each H-bridge are set high and low signals; the current in each bridge is scaled to the corresponding percentage of the full-scale current set by the VREF input pin and the sense resistor. The function of the pin is shown in Table 2.

xI1	xI0	RELATIVE CURRENT				
XII		(% FULL-SCALE CHOPPING CURRENT)				
1	1	0%				
1	0	38%				
0	1	71%				
0	0	100%				

For example, if VREF = 3.3 V and a $R_{ISEN} = 0.5 \Omega$, When the current is set to 100% (xI1, xI0 = 00), the chopping current will be 1.32 A; When the current is set to 71% (xI1, xI0 = 01), the chopping current will be1.32 A x 71% =0.937A; andWhen the current is set to 38% (xI1, xI0 = 10), the chopping current will be1.32 A x 38% =0.502A; If (xI1, xI0 = 11) the bridge will be disabled and no current will flow.

Decay Mode

During PWM current chopping, the H-bridge is enabled to drive current through the motor winding until the PWM current chopping threshold is reached. This is shown in Figure 2 as case 1. The current flow direction shown indicates the state when the xENBL pin is high.

Once the chopping current threshold is reached, the H-bridge can operate in two different states, fast decay or slow decay.

In fast decay mode, once the PWM chopping current level has been reached, the H-bridge reverses state to allow winding current to flow in a reverse direction. As the winding current approaches zero, the bridge isdisabled to prevent any reverse current flow. Fast decay mode is shown in Figure 2 as case 2. In slow decay mode, winding current is re-circulated by enabling both of the low-side FETs in the bridge. This is shown in Figure 2 as case 3.

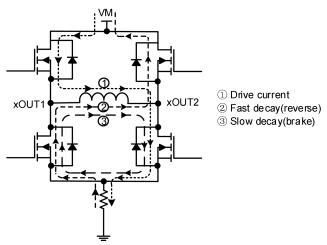


Figure 2. Decay Mode

The TMI8262 supports fast decay, slow decay and a mixed decay mode. Slow, fast, or mixed decay mode is selected by the state of the DECAY pin - logic low selects slow decay, open selects mixed decay operation, and logic high sets fast decay mode. Note that the DECAY pin sets the decay mode for both H-bridges.

Mixed decay mode begins as fast decay, but at a fixed period of time (75% of the PWM cycle) switches to slow decay mode for the remainder of the fixed PWM period.

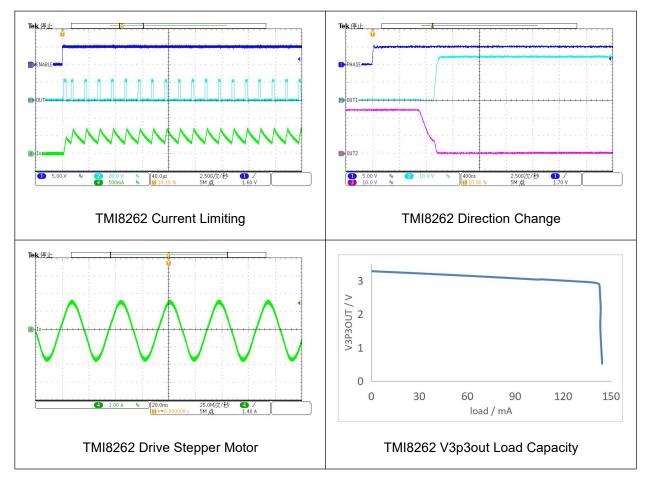
VM Undervoltage Lockout (UVLO)

If at any time the voltage on the VM pin falls below the undervoltage-lockout threshold voltage, all FETs in the H-bridge will be disabled. Operation resumes when VM rises above the UVLO threshold.

Overcurrent Protection (OCP)

If the output current exceeds the OCP threshold, I_{OCP} , for longer than t_{OCP} , all FETs in the H-bridge are disabled.

As to TMI8262, after a duration of t_{RETRY} , the H-bridge is re-enabled according to the state of the INx pins. If the overcurrent fault is still present, the cycle repeats, otherwise normal device operation resumes.


Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge are disabled. After the die temperature has fallen to a safe level, operation automatically resumes.

VM Control

In some systems, varying VM as a means of changing motor speed is desirable.

Application Curves

TMÍ SUNTO

APPLICATION INFORMATION

Application information

The TMI8262 can be used to control a bipolar stepper motor. The PHASE/ENBL interface controls the outputs and current control can be implemented with the internal current regulation circuitry. Detailed fault reporting is provided with the internal protection circuits and nFAULT pin.

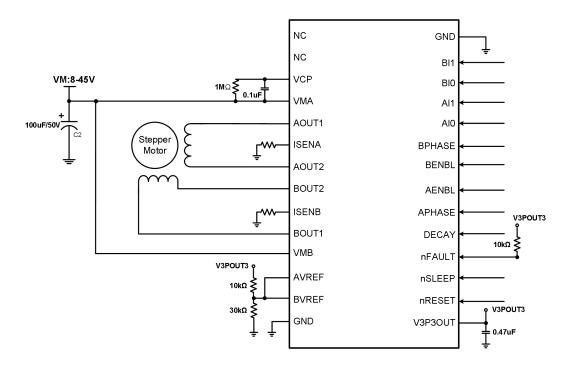
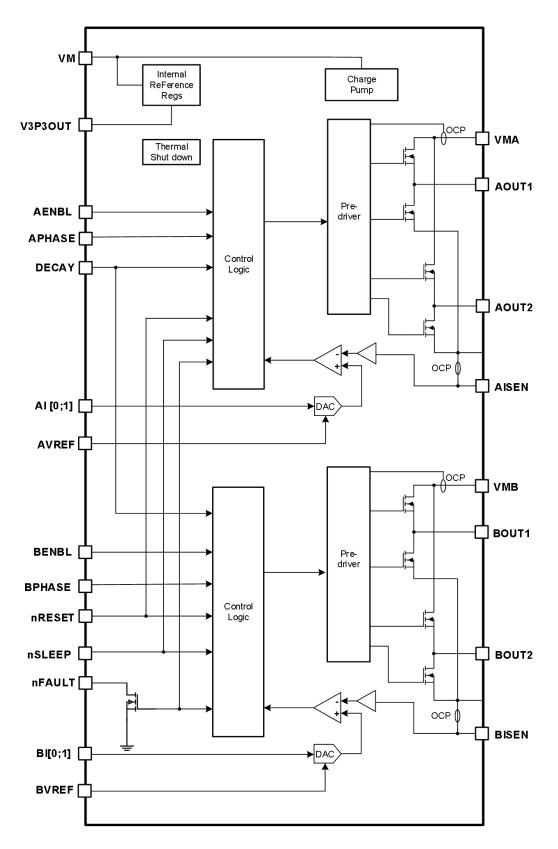
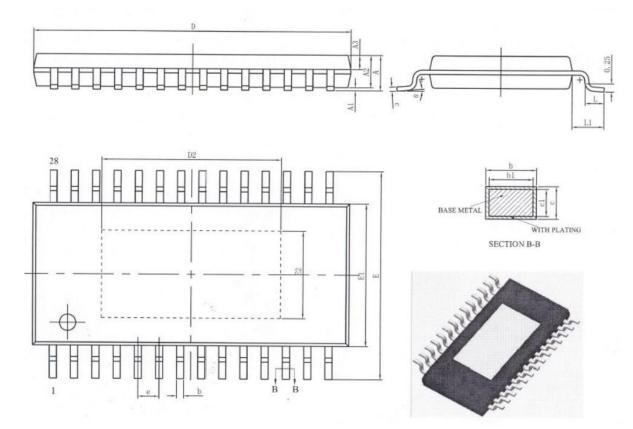



Figure 3. TMI8262_TMI8262Q Typical Application

TMI8262 TMI8262Q

Block Diagram



PACKAGE INFORMATION

HTSSOP28

Unit: mm

Symbol	Dimensions In Millimeters			Symbol	Dimensions In Millimeters			
	Min	NOM	Max	Symbol	Min	NOM	Max	
А	-	-	1.20	D2	3.95	4.05	4.15	
A1	0.05	-	0.15	E	6.20	6.40	6.60	
A2	0.80	-	1.00	E1	4.30	4.40	4.50	
A2	0.39	0.44	0.49	E2	2.75	2.85	2.95	
b	0.20	-	0.29	е		0.65BSC		
b1	0.19	0.22	0.25	L	0.45	0.60	0.75	
с	0.13	-	0.18	L1	1.00BSC			
c1	0.12	0.13	0.15	θ	0°	-	8°	
D	9.60	9.70	9.80					

Note:

1) All dimensions are in millimeters.

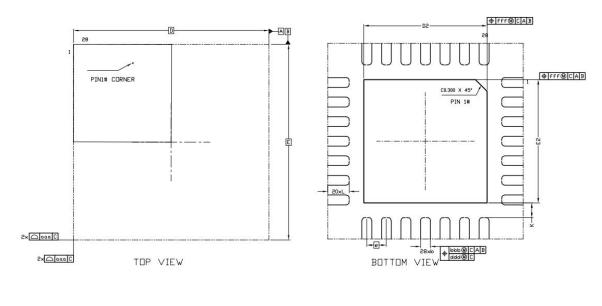
2) Package length does not include mold flash, protrusion or gate burr.

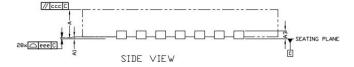
3) Package width does not include inter lead flash or protrusion.

4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max.

www.toll-semi.com

TMÍ SUNTO





5) Pin 1 is lower left pin when reading top mark from left to right.

PACKAGE INFORMATION

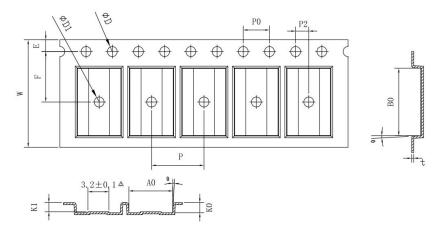
QFN5x5-28

Unit: mm

Symbol	Dimensions In Millimeters			Symbol	Dimensions In Millimeters		
Symbol	Min	NOM	Мах	Symbol	Min	NOM	Max
^	0.70	0.75	0.80	е		0.50BSC	
A	0.80	0.85	0.90	L	0.50	0.55	0.60
A1	0	0.02	0.05	K	0.20	-	-
A3	-	0.20 REF	-	aaa	0.10		
b	0.18	0.25	0.30	bbb	0.10		
D		5.00BSC		CCC	0.10		
Е		5.00BSC		ddd	0.05		
D2	3.05	3.15	3.25	eee		0.08	
E2	3.05	3.15	3.25	fff		0.10	

Note:

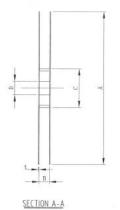
1) All dimensions are in millimeters.

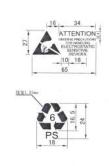

2) Package length does not include mold flash, protrusion or gate burr.

- 3) Package width does not include inter lead flash or protrusion.
- 4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max.
- 5) Pin 1 is lower left pin when reading top mark from left to right.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS: HTSSOP28


Unit: mm

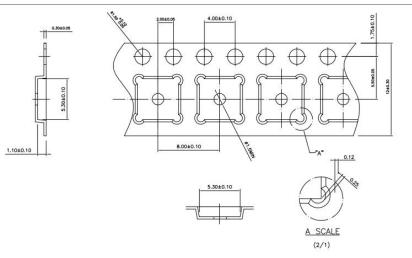

Symbol	Dimensions	Symbol	Dimensions	Symbol	Dimensions	Symbol	Dimensions
A0	6.70±0.10	θ	5° TYP	Е	1.75±0.10	D1	1.55MIN
B0	10.05±0.10	t	0.30±0.05	F	7.50±0.10	P0	0.30±0.10
K0	1.50±0.10	W	16.00±0.30	P2	2.00±0.10	10P0	40.00±0.20
K1	1.35±0.10	Р	8.00±0.10	D	1.50±0.10		

REEL DIMENSIONS: HTSSOP28

SCALE: 1 : 1

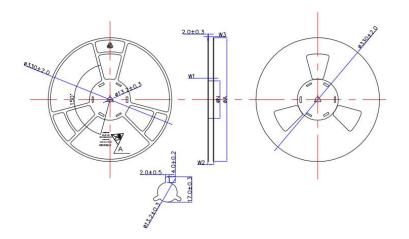
Unit: mm

ØA	В	ØC	ØD	t
329±1.0	16.8±1.0	100±0.5	13.3±0.3	2.0±0.3


Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 4500
- 3) MSL level is level 3.

TAPE AND REEL INFORMATION


TAPE DIMENSIONS: QFN5x5-28

Unit: mm

Symbol	Dimensions	Symbol	Dimensions	Symbol	Dimensions	Symbol	Dimensions
A0	6.70±0.10	θ	5° TYP	E	1.75±0.10	D1	1.55MIN
B0	10.05±0.10	t	0.30±0.05	F	7.50±0.10	P0	0.30±0.10
K0	1.50±0.10	W	16.00±0.30	P2	2.00±0.10	10P0	40.00±0.20
K1	1.35±0.10	Р	8.00±0.10	D	1.50±0.10		

REEL DIMENSIONS: QFN5x5-28

Unit: mm

ØA	ØN	W1(+2/0)	W2(Max)	W2(Max)
330±2.0	100±1.0	12.4	18.4	11.9/15.4

Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 5000
- 3) MSL level is level 3.

Important Notification

This document only provides product information. Xi'an TOLL Microelectronic Inc. (TMI) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time. Xi'an TOLL Microelectronic Inc. (TMI) cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TMI product. No circuit patent licenses are implied.

All rights are reserved by Xi'an TOLL Microelectronic Inc. http:// www.toll-semi.com