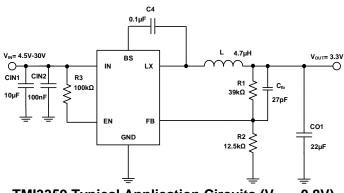


# 1.5MHz, 30V, 1.2A FPWM Synchronous Step-Down Converter

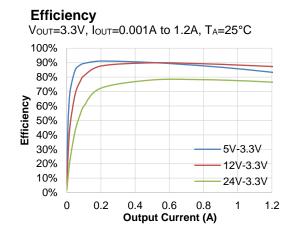
#### **Features**

- Wide Input Range: 4.5V to 30V
- Feedback Voltage: 0.8V±2%
- 1.5MHz Switch Frequency
- Up to 1.2A Output Current
- Force Constant Current PWM Operation
- COT control to achieve fast transient responses
- Integrated internal compensation
- Stable with Low ESR Ceramic Output Capacitors
- Over Current Protection with Hiccup Mode
- Thermal Shutdown
- Inrush Current Limit and Soft Start
- Build in Input Over Voltage Protection
- Available in SOT23-6 Package

## **Description**


The TMI3359 is a high efficiency 1.5MHz, synchronous step-down DC-DC converter capable of delivering up to 1.2A current with force PWM operation and adopts COT control with fast transient response performance. TMI3359 integrates both high and low side switch with low  $R_{\rm DS(ON)}$  to minimize the conduction loss. Low output voltage ripple and small external inductor and capacitor size are achieved with 1.5MHz switching frequency.

The TMI3359 requires a minimum number of readily available standard external components and is available in a 6-pin SOT23-6 RoHS compliant package.


## **Application**

- Security Equipment
- Distributed Power Systems
- Flat Panel Television and Monitors
- Smart Home
- Industrial Power Systems

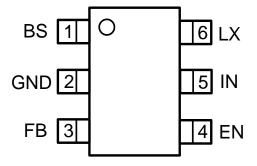
## **Typical Application**



TMI3359 Typical Application Circuits (V<sub>REF</sub>=0.8V)



TMÍ SUNTO


1



# Absolute Maximum Ratings (Note 1)

| Parameter                         | Min  | Max      | Unit |
|-----------------------------------|------|----------|------|
| Input Supply Voltage              | -0.3 | 33       | V    |
| Enable pin, EN                    | -0.3 | $V_{IN}$ | V    |
| LX Voltages                       | -0.3 | 33       | V    |
| LX Voltages (<10ns transient)     | -3.0 | 35       | V    |
| FB Voltage                        | -0.3 | 6        | V    |
| BS to LX Voltage                  | -0.3 | 6        | V    |
| Storage Temperature Range         | -65  | 150      | °C   |
| Junction Temperature (Note2)      |      | 150      | °C   |
| Power Dissipation                 |      | 1000     | mW   |
| Lead Temperature (Soldering, 10s) |      | 260      | °C   |

# **Package**



SOT23-6

Top Marking: TY1AXXX
TY1A: Device Code
XXX: Inside Code

## **Order Information**

| Part Number | Package | Top Marking | Quantity/Reel |
|-------------|---------|-------------|---------------|
| TMI3359     | SOT23-6 | TY1AXXX     | 3000          |

TMI3359 devices are Pb-free and RoHS compliant.



## **Pin Functions**

| Pin  | Name | Function                                                                         |
|------|------|----------------------------------------------------------------------------------|
| 1    | BS   | Bootstrap. A capacitor connected between LX and BS pins is required to           |
| I    | ВО   | form a floating supply across the high-side switch driver.                       |
| 2    | GND  | Ground Pin                                                                       |
| 2    | ED   | Output Voltage feedback input. Connect FB to the center point of the             |
| 3 FB |      | external resistor divider.                                                       |
| 4    | EN   | Drive this pin to a logic-high to enable the IC. Drive to a logic-low to disable |
| 4 EN |      | the IC and enter micro-power shutdown mode. Don't floating EN.                   |
| 5    | IN   | Power supply Pin                                                                 |
| 6    | LX   | Switching Pin                                                                    |

# **ESD Rating**

| Items                | Description                       | Value | Unit |
|----------------------|-----------------------------------|-------|------|
| V <sub>ESD_HBM</sub> | Human Body Model for all pins     | ±2000 | ٧    |
| V <sub>ESD_CDM</sub> | Charged Device Model for all pins | ±2000 | V    |

JEDEC specification JS-001

# **Recommended Operating Conditions**

| Items          | Description                    | Min | Max | Unit |
|----------------|--------------------------------|-----|-----|------|
| Voltage Range  | IN                             | 4.5 | 30  | V    |
| T <sub>J</sub> | Operating Junction Temperature | -40 | 125 | °C   |

# Thermal Resistance (Note3)

| Items         | Description                              | Value | Unit |
|---------------|------------------------------------------|-------|------|
| $\theta_{JA}$ | Junction-to-ambient thermal resistance   | 120   | °C/W |
| $\theta_{JC}$ | Junction-to-case(top) thermal resistance | 45    | °C/W |





## **Electrical Characteristics**

 $V_{IN}$ =12V,  $V_{OUT}$ =3.3V,  $T_A$  = 25°C, unless otherwise noted.

| Conditions                                                    | Min                                                                                                                                                                                                                 | Тур                                                                                                                                                                                                                                        | Max                                                                                                                                                                                                                                                                                                    | Unit            |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                                               | 4.5                                                                                                                                                                                                                 |                                                                                                                                                                                                                                            | 30                                                                                                                                                                                                                                                                                                     | V               |
|                                                               |                                                                                                                                                                                                                     | 31.5                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                        | V               |
|                                                               |                                                                                                                                                                                                                     | 4.3                                                                                                                                                                                                                                        | 4.5                                                                                                                                                                                                                                                                                                    | V               |
|                                                               |                                                                                                                                                                                                                     | 0.3                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                        | V               |
| V <sub>EN</sub> =2V, V <sub>FB</sub> =V <sub>REF</sub> x 105% |                                                                                                                                                                                                                     | 350                                                                                                                                                                                                                                        | 500                                                                                                                                                                                                                                                                                                    | μA              |
| V <sub>EN</sub> =2V, Switching, No Load                       |                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                     | mA              |
| V <sub>IN</sub> =12V, EN=0V                                   |                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                     | μA              |
| T <sub>A</sub> =25°C                                          | 0.784                                                                                                                                                                                                               | 8.0                                                                                                                                                                                                                                        | 0.816                                                                                                                                                                                                                                                                                                  | V               |
|                                                               | -0.5                                                                                                                                                                                                                |                                                                                                                                                                                                                                            | 0.5                                                                                                                                                                                                                                                                                                    | μA              |
|                                                               |                                                                                                                                                                                                                     | 250                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                        | mΩ              |
|                                                               |                                                                                                                                                                                                                     | 120                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                        | mΩ              |
| V <sub>EN</sub> =0V, V <sub>L</sub> X=0V                      | 1                                                                                                                                                                                                                   |                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                     | μA              |
| Minimum Duty Cycle                                            |                                                                                                                                                                                                                     | 2.0                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                        | Α               |
|                                                               | 1.2                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                                        | 1.8                                                                                                                                                                                                                                                                                                    | MHz             |
|                                                               |                                                                                                                                                                                                                     | 78                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        | %               |
|                                                               |                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                        | ns              |
|                                                               |                                                                                                                                                                                                                     | 125                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                        | ns              |
|                                                               | 0.5                                                                                                                                                                                                                 | 0.7                                                                                                                                                                                                                                        | 1.0                                                                                                                                                                                                                                                                                                    | ms              |
|                                                               |                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                        | ms              |
|                                                               |                                                                                                                                                                                                                     | 4.5                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                        | ms              |
|                                                               | 0.85                                                                                                                                                                                                                | 1.1                                                                                                                                                                                                                                        | 1.3                                                                                                                                                                                                                                                                                                    | V               |
|                                                               |                                                                                                                                                                                                                     | 150                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                        | mV              |
|                                                               |                                                                                                                                                                                                                     | 180                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                        | μs              |
| V <sub>EN</sub> =2V                                           | -1                                                                                                                                                                                                                  |                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                      | μA              |
|                                                               |                                                                                                                                                                                                                     | 165                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                        | °C              |
|                                                               |                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        | °C              |
|                                                               | V <sub>EN</sub> =2V, V <sub>FB</sub> =V <sub>REF</sub> x 105% V <sub>EN</sub> =2V, Switching, No Load V <sub>IN</sub> =12V, EN=0V T <sub>A</sub> =25°C  V <sub>EN</sub> =0V, V <sub>L</sub> x=0V Minimum Duty Cycle | V <sub>EN</sub> =2V, V <sub>FB</sub> =V <sub>REF</sub> x 105% V <sub>EN</sub> =2V, Switching, No Load V <sub>IN</sub> =12V, EN=0V T <sub>A</sub> =25°C 0.784 -0.5  V <sub>EN</sub> =0V, V <sub>L</sub> x=0V 1 Minimum Duty Cycle 1.2  0.85 | 4.5   31.5   4.3   0.3   VEN=2V, VFB=VREF x 105%   350   VEN=2V, Switching, No Load   8   VIN=12V, EN=0V   5   TA=25°C   0.784   0.8   -0.5   250   120   VEN=0V, VLx=0V   1   Minimum Duty Cycle   2.0   1.2   1.5   78   100   125   0.5   0.7   1   4.5   150   180   VEN=2V   -1   165   165   165 | 4.5   30   31.5 |

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

**Note 2**:  $T_J$  is calculated from the ambient temperature  $T_A$  and power dissipation  $P_D$  according to the following formula:  $T_J = T_A + P_D \times \theta_{JA}$ . The maximum allowable continuous power dissipation at any ambient temperature is calculated by  $P_{D (MAX)} = (T_{J(MAX)} - T_A)/\theta_{JA}$ .

Note 3: Measured on JESD51-7, 4-layer PCB.

Note 4: Guaranteed by design.



## **Block Diagram**

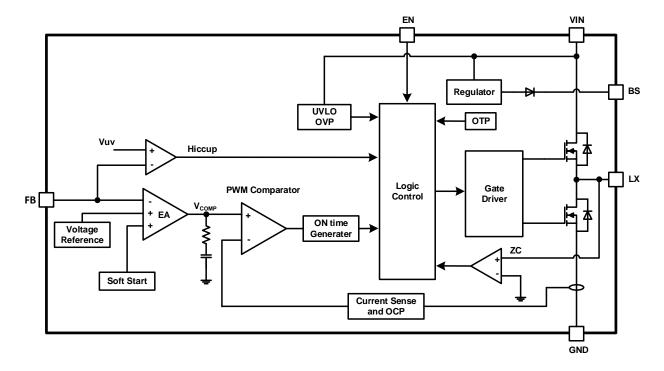



Figure 1. TMI3359 Block Diagram

## **Operation Description**

#### **Internal Regulator**

The TMI3359 is a synchronous step down DC/DC converter with COT (constant on time) control that provides excellent transient response with no extra external compensation components. This device contains low resistance, high voltage high side power MOSFETs, and operates at 1.5MHz switching frequency and force PWM operating to ensure a compact, high efficiency design with excellent AC and DC performance.

#### Internal Soft-Start

The soft-start is implemented to prevent the converter output voltage from overshooting during startup. When the chip starts, the internal circuitry generates a soft-start voltage (SS) ramping up from 0V to  $V_{REF}$ . When it is lower than the internal FB reference ( $V_{REF}$ ), SS overrides REF so the error amplifier uses SS as the reference. When SS is higher than  $V_{REF}$ ,  $V_{REF}$  regains control. The SS time is internally fixed to 0.7ms typically. During the soft start process, TMI3359 operates in PFM condition in order to achieve prebias start up function. After soft start, TMI3359 switches operation condition to force PWM mode in all load range. The force PWM mode provides low output voltage ripples.

#### **Over-Current-Protection and Short Circuits Protection**

The TMI3359 has cycle-by-cycle valley current limit function. When the inductor current value is larger than the current limit during MOSFET on state, the device enters into over current protection mode and MOSFET keeps on state until inductor current drops down to the value equal or lower than the current limit, and then high side MOSFET could turn on again.

TMÍ SUNTO

www.toll-semi.com



If the output is short to GND and the output voltage drop until feedback voltage  $V_{FB}$  is below the output under-voltage  $V_{UV}$  threshold which is typically 50% of  $V_{REF}$ , TMI3359 enters into hiccup mode to periodically disable and restart switching operation. The hiccup mode helps to reduce power dissipation and thermal rise during output short condition. The period of TMI3359 hiccup mode is typically 5.5ms.

#### Startup and Shutdown

If both VIN and EN are higher than their appropriate thresholds, the chip starts switching operation. The reference block starts first, generating stable reference voltage and currents, and then the internal regulator is enabled. The regulator provides stable supply for the remaining circuitries. Three events can shut down the chip: EN low, VIN low and thermal shutdown. In the shutdown procedure, the signaling path is first blocked to avoid any fault triggering. The V<sub>COMP</sub> voltage and the internal supply rail are then pulled down. Please do not float EN pin in the application.

## **Application Information**

#### **Setting the Output Voltage**

The external resistor divider is used to set the output voltage (see Typical Application on page 1). Choose R1 to be around  $39k\Omega$  for optimal transient response. R2 is then given by:

Table 1: Selection for Common Output Voltages (V<sub>FB</sub>=0.8V)

| V <sub>OUT</sub> (V) | R1 (kΩ) | R2 (kΩ) C <sub>FB</sub> (pF) |    | L (µH) |
|----------------------|---------|------------------------------|----|--------|
| 12                   | 39      | 2.74                         | 27 | 10     |
| 5                    | 39      | 7.43                         | 27 | 4.7    |
| 3.3                  | 39      | 12.5                         | 27 | 4.7    |



Figure 2. Feedback Network

TMI3359 adopts COT control mode with 1.5MHz high switching frequency. The minimum off time of TMI3359 is 100ns, so the minimum duty cycle with 1.5MHz switching frequency is 15%. When the operation duty cycle is lower than 15%, the switching frequency reduce. The recommended operation duty cycle is the range of 10% to 78%.

#### Selecting the Inductor

An inductor with a DC current rating of at least 25% percent higher than the maximum load current is recommended for most applications. For highest efficiency, the inductor DC resistance should be as small as possible. For most designs, the inductance value can be derived from the following equation.

$$L = \frac{V_{out} \times (V_{in} - V_{out})}{V_{in} \times \Delta I_L \times f_{OSC}}$$

Where  $\Delta I_{L}$  is the inductor ripple current. Choose inductor ripple current to be approximately 30% if the maximum load current 1.2A. The maximum inductor peak current is:

$$I_{\scriptscriptstyle L(M\!A\!X)} = I_{\scriptscriptstyle LO\!A\!D} + \frac{\Delta I_{\scriptscriptstyle L}}{2}$$

Under light load conditions below 100mA, larger inductance is recommended for improved efficiency.



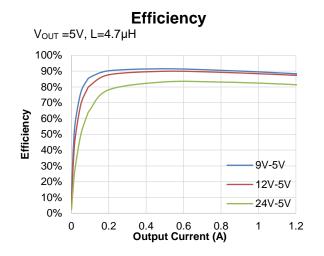
#### **Selecting the Output Capacitor**

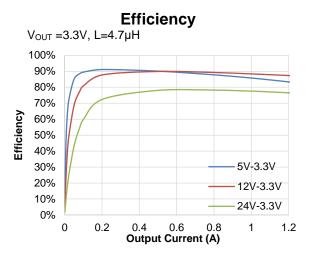
The output capacitor (Co1) is required to maintain the DC output voltage. Ceramic, tantalum, or low ESR electrolytic capacitors are recommended. Low ESR capacitors are preferred to keep the output voltage ripple low. The output voltage ripple can be estimated by:

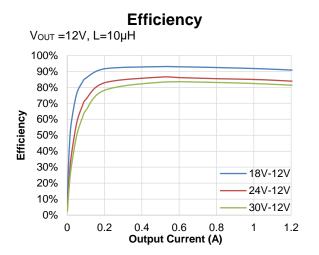
$$\Delta V_{OUT} = \frac{V_{OUT}}{f_{S} \times L} \times \left[ 1 - \frac{V_{OUT}}{V_{IN}} \right] \times \left[ R_{ESR} + \frac{1}{8 \times f_{S} \times C_{2}} \right]$$

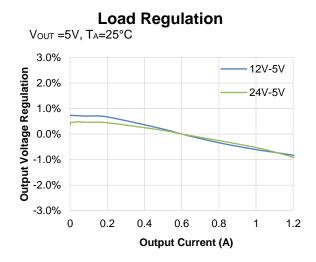
Where L is the inductor value and R<sub>ESR</sub> is the equivalent series resistance (ESR) value of the output capacitor. In the case of ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance. The output voltage ripple is mainly caused by the capacitance. For simplification, the output voltage ripple can be estimated by:

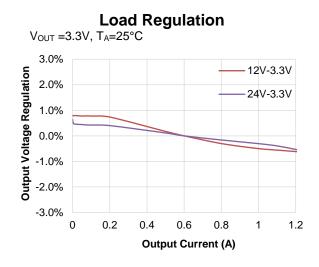
$$\Delta V_{OUT} = \frac{V_{OUT}}{8 \times f_s^2 \times L \times C_2} \times \left[ 1 - \frac{V_{OUT}}{V_{IN}} \right]$$

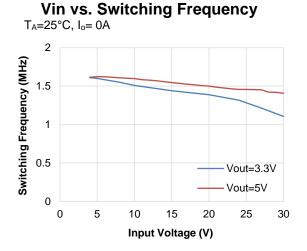

In the case of tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency. For simplification, the output ripple can be approximated to:


$$\Delta V_{OUT} = \frac{V_{OUT}}{f_S \times L} \times \left[ 1 - \frac{V_{OUT}}{V_{IN}} \right] \times R_{ESR}$$


The characteristics of the output capacitor also affect the stability of the regulation system. The TMI3359 can be optimized for a wide range of capacitance and ESR values. 22µF or larger output capacitance is recommended for almost application. Because of DC derating of ceramic capacitor, the output capacitor DC voltage rating and package size must be considered in high output voltage application.



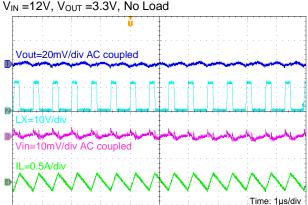


# **Typical Performance Characteristics**



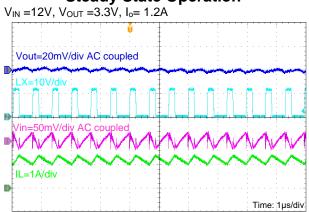




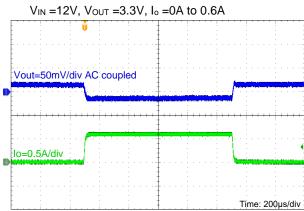


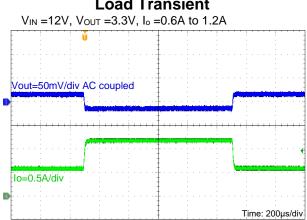


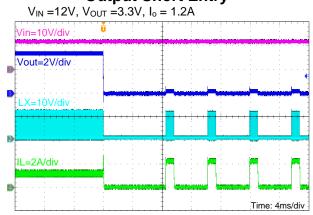

# Typical Performance Characteristics<sub>(continued)</sub>


# 

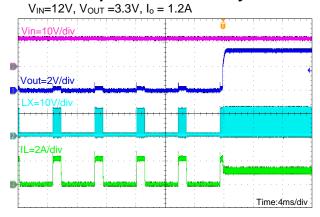



## **Steady State Operation**




#### **Load Transient**

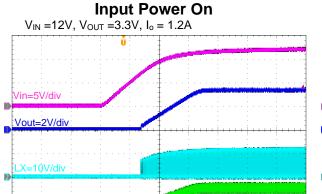



#### **Load Transient**

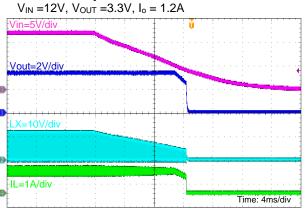


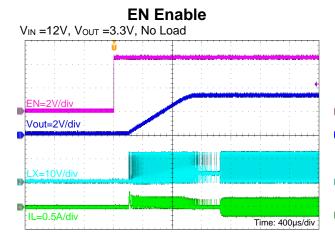
#### **Output Short Entry**



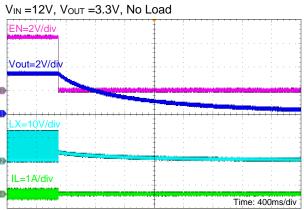

#### **Output Short Recovery**

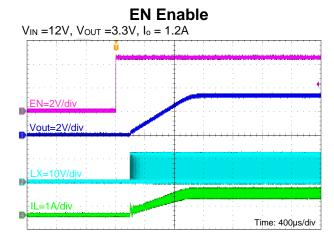




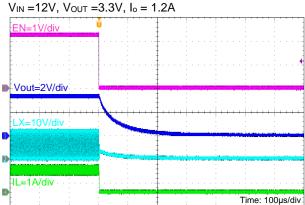


# **Typical Performance Characteristics**(continued)

Time: 400µs/div





## **Input Power Down**

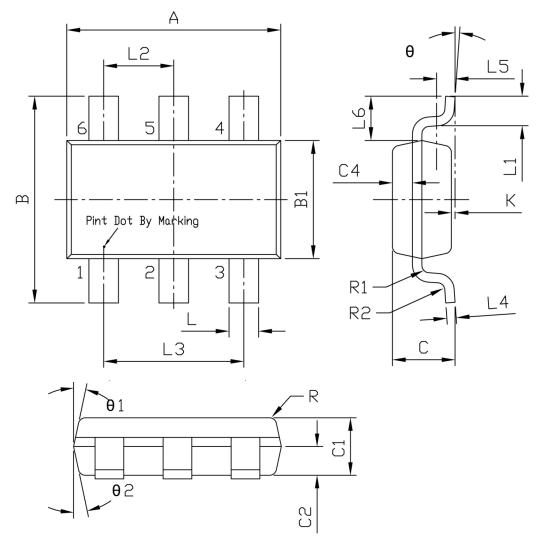





### **EN Disable**











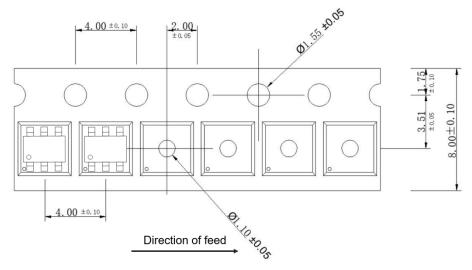

# **Package Information**

# SOT23-6

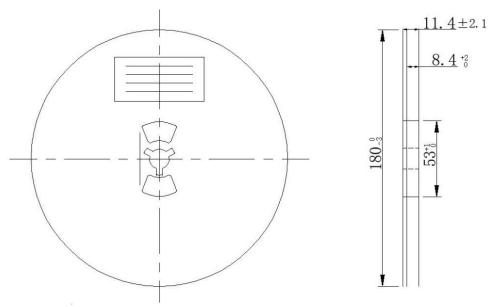


Unit: mm

| Symbol | Dimer | nsions In Millin | neters | Symbol | Dimer | nsions In Millin | neters |
|--------|-------|------------------|--------|--------|-------|------------------|--------|
| Symbol | Min   | Тур              | Max    | Symbol | Min   | Тур              | Max    |
| Α      | 2.80  | 2.90             | 3.00   | L3     | 1.800 | 1.900            | 2.000  |
| В      | 2.60  | 2.80             | 3.00   | L4     | 0.077 | 0.127            | 0.177  |
| B1     | 1.50  | 1.60             | 1.70   | L5     | -     | 0.250            | -      |
| С      | -     | -                | 1.05   | L6     | -     | 0.600            | -      |
| C1     | 0.60  | 0.80             | 1.00   | θ      | 0°    |                  | 0°     |
| C2     | 0.35  | 0.40             | 0.45   | θ1     | 10°   | 12°              | 14°    |
| C4     | 0.223 | 0.273            | 0.323  | θ2     | 10°   | 12°              | 14°    |
| K      | 0.000 | 0.075            | 0.150  | R      | -     | 0.100            | -      |
| L      | 0.325 | 0.400            | 0.475  | R1     | -     | 0.100            | -      |
| L1     | 0.325 | 0.450            | 0.550  | R2     | -     | 0.100            | -      |
| L2     | 0.850 | 0.950            | 1.050  |        |       |                  |        |


TMI and SUNTO are the brands of TOLL microelectronic






# **Tape and Reel Information**

## **Tape Dimensions:**



#### **Reel Dimensions:**



#### Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 3000
- 3) MSL level is Level 3.