TS5A3166 0.9- Ω SPST Analog Switch

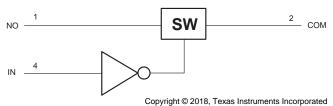
1 Features

- Low ON-State Resistance (0.9 Ω)
- Control Inputs Are 5.5-V Tolerant
- · Low Charge Injection
- Low Total Harmonic Distortion (THD)
- 1.65-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- · Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communication Circuits
- Modems
- Hard Drives
- Computer Peripherals
- · Wireless Terminals and Peripherals
- Microphone Switching Notebook Docking

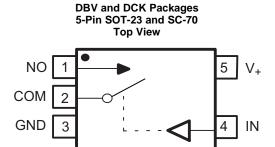
3 Description


The TS5A3166 device is a single-pole single-throw (SPST) analog switch that is designed to operate from 1.65 V to 5.5 V. The device offers a low ON-state resistance. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	SOT-23 (5)	2.90 mm × 1.60 mm
TS5A3166	SC70 (5)	2.00 mm × 1.25 mm
100/10100	DSBGA (5)	1.388 mm × 0.888 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.


Simplified Schematic

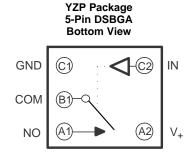


Table of Contents	
-------------------	--

1	Features 1		8.2 Functional Block Diagram	16
2	Applications 1		8.3 Feature Description	
3			8.4 Device Functional Modes	16
4		9	Application and Implementation	17
5	-		9.1 Application Information	17
6			9.2 Typical Application	18
U	6.1 Absolute Maximum Ratings	10	Power Supply Recommendations	19
	6.2 ESD Ratings	11	Layout	
	6.3 Recommended Operating Conditions		11.1 Layout Guidelines	
	6.4 Thermal Information		11.2 Layout Example	
	6.5 Electrical Characteristics for 5-V Supply	12		
	6.6 Electrical Characteristics for 3.3-V Supply		12.1 Device Support	
	6.7 Electrical Characteristics for 2.5-V Supply		12.2 Community Resources	
	6.8 Electrical Characteristics for 1.8-V Supply		12.3 Trademarks	
	6.9 Typical Characteristics		12.4 Electrostatic Discharge Caution	
7			12.5 Glossary	
7		13		
8	Detailed Description 16 8.1 Overview 16		Information	22
	Inges from Revision D (February 2016) to Revision E Changed the YZP package pin numbers			Page 3
Cha	inges from Revision C (May 2015) to Revision D			Page
-	Added "port" to COM description in <i>Pin Functions</i> table			
	·			
	Deleted "digitial" from GND description in Pin Functions table	9		3
Cha	inges from Revision B (September 2013) to Revision C			Page
• ,	Added Applications, Device Information table, Pin Functions Typical Characteristics, Feature Description section, Device	Functio	•	d
•	section, Power Supply Recommendations section, Layout se Mechanical, Packaging, and Orderable Information section			
٥:	Mechanical, Packaging, and Orderable Information section Deleted Ordering Information table.			1
Cha	Mechanical, Packaging, and Orderable Information section			
-	Mechanical, Packaging, and Orderable Information section Deleted Ordering Information table.			1 Page

5 Pin Configuration and Functions

Pin Functions

	PIN					
DBC, DCK NO.	YZP NO.	NAME	TYPE	DESCRIPTION		
1	A1	NO	I/O	Normally opened port		
2	B1	COM	I/O	Common port		
3	C1	GND	GND	Ground		
4	C2	IN	I	Digital control pin to connect COM to NO		
5	A2	V ₊	Power	Power Supply		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)

			MIN	MAX	UNIT
V ₊	Supply voltage ⁽³⁾		-0.5	6.5	V
$V_{NO} \ V_{COM}$	Analog voltage ^{(3) (4) (5)}		-0.5	V ₊ + 0.5	V
I _K	Analog port diode current	$V_{NO}, V_{COM} < 0$	-50		mA
I _{NO}	ON-state switch current	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-200	200	A
I _{COM}	ON-state peak switch current ⁽⁶⁾	$V_{NO,} V_{COM} = 0 \text{ to } V_{+}$	-400	400	mA
VI	Digital input voltage (3)(4)		-0.5	6.5	V
I _{IK}	Digital clamp current	V _I < 0	-50		mA
I ₊	Continuous current through V ₊			100	mA
I _{GND}	Continuous current through GND		-100		mA
T _{stg}	Storage temperature		-65	150	°C
Tj	Junction temperature			150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
- (3) All voltages are with respect to ground, unless otherwise specified.
- The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (5) This value is limited to 5.5 V maximum.
- (6) Pulse at 1-ms duration < 10% duty cycle.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{I/O}	Input/output voltage	0	V ₊	V
V ₊	Supply voltage	1.65	5.5	V
VI	Control Input Voltage	0	5.5	V
T _A	Operating free-air temperature	-40	85	°C

6.4 Thermal Information

		TS5A3166					
	THERMAL METRIC ⁽¹⁾	DBV (SOT)	DCK (SC-70)	YZP (DSBGA)	UNIT		
		5 PINS	5 PINS	5 PINS			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	206	252	132	°C/W		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics for 5-V Supply

 $V_{+} = 4.5 \text{ V to } 5.5 \text{ V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C} \text{ (unless otherwise noted)}^{(1)}$

PA	RAMETER	TEST CO	NDITIONS	T _A	V ₊	MIN	TYP	MAX	UNIT
Analog Switch	:h								
V _{COM} , V _{NO}	Analog signal range					0		V ₊	V
	Peak ON	$0 \le V_{NO} \le V_+$	Switch ON,	25°C	4.5 V		0.8	1.1	Ω
r _{peak}	resistance	$I_{COM} = -100 \text{ mA},$	see Figure 13	Full	4.5 V			1.2	32
r	ON-state	V _{NO} = 2.5 V,	Switch ON,	25°C	4.5 V		0.7	0.9	Ω
r _{on}	resistance	$I_{COM} = -100 \text{ mA},$	see Figure 13	Full	4.5 V			1	22
	ON-state	$0 \le V_{NO} \le V_+,$ $I_{COM} = -100 \text{ mA},$	Switch ON.	25°C			0.15		
r _{on(flat)}	resistance flatness	V _{NO} = 1 V, 1.5 V, 2.5 V,	s V, 2.5 V, see Figure 13	25°C	4.5 V		0.09	0.15	Ω
	naurooo	$I_{COM} = -100 \text{ mA},$		Full				0.15	
		V _{NO} = 1 V,		25°C		-20	4	20	
I _{NO(OFF)}	NO OFF leakage	$V_{COM} = 4.5 \text{ V},$ or $V_{NO} = 4.5 \text{ V},$ $V_{COM} = 1 \text{ V},$	Switch OFF, see Figure 14	Full	5.5 V	-100		100	nA
		$V_{NO} = 0 \text{ to } 5.5 \text{ V},$		25°C	0 V	- 5	0.4	5	^
I _{NO(PWROFF)}		$V_{COM} = 5.5 \text{ V to } 0,$		Full	UV	-15		15	μΑ
		$V_{COM} = 1 V$,		25°C		-20	4	20	
I _{COM(OFF)}	COM OFF leakage	$\begin{aligned} &V_{NO} = 4.5 \text{ V,} \\ &\text{or} \\ &V_{COM} = 4.5 \text{ V,} \\ &V_{NO} = 1 \text{ V,} \end{aligned}$	Switch OFF, see Figure 14	Full	5.5 V	-100		100	nA
	333	$V_{COM} = 5.5 \text{ V to 0},$		25°C	0 V	- 5	0.4	5	^
I _{COM(PWROFF)}		$V_{NO} = 0 \text{ to } 5.5 \text{ V},$		Full	UV	-15		15	μΑ

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Electrical Characteristics for 5-V Supply (continued)

 $V_{+} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ (unless otherwise noted)}^{(1)}$

P	ARAMETER	TEST (CONDITIONS	TA	V ₊	MIN	TYP	MAX	UNIT
		V _{NO} = 1 V,		25°C		-2	0.3	2	
I _{NO(ON)}	NO ON leakage current	$V_{COM} = Open,$ or $V_{NO} = 4.5 \text{ V},$ $V_{COM} = Open,$	Switch ON, see Figure 15	Full	5.5 V	-20		20	nA
	0011	V _{COM} = 1 V,		25°C		-2	0.3	2	
I _{COM(ON)}	COM ON leakage current	V_{NO} = Open, or V_{COM} = 4.5 V, V_{NO} = Open,	Switch ON, see Figure 15	Full	5.5 V	-20		20	nA
Digital Cont	rol Inputs (IN)					·			
V_{IH}	Input logic high			Full		2.4		5.5	V
V _{IL}	Input logic low			Full		0		0.8	V
	Input leakage	V FFV or 0		25°C	F. F. \/	-2	0.3	2	π Λ
I _{IH} , I _{IL}	current	$V_1 = 5.5 \text{ V or } 0$		Full	5.5 V	-20		20	nA
Dynamic						·			
		$V_{COM} = V_+,$	$C_L = 35 \text{ pF},$	25°C	5 V	2.5	4.5	7	
t _{ON}	Turnon time	$R_L = 50 \Omega,$	see Figure 17	Full	4.5 V to 5.5 V	1.5		7.5	ns
		$V_{COM} = V_+,$	C _L = 35 pF,	25°C	5 V	6	9	11.5	
t _{OFF}	Turnoff time	$R_L = 50 \Omega$	see Figure 17	Full	4.5 V to 5.5 V	4		12.5	ns
Q_C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0$,	$C_L = 1 \text{ nF},$ see Figure 20	25°C	5 V		1		pC
$C_{\text{NO(OFF)}}$	NO OFF capacitance	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	5 V		19		pF
C _{COM(OFF)}	COM OFF capacitance	V _{COM} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	5 V		18		pF
C _{NO(ON)}	NO ON capacitance	V _{NO} = V ₊ or GND, Switch ON,	See Figure 16	25°C	5 V		35.5		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	5 V		35.5		pF
C _I	Digital input capacitance	$V_I = V_+$ or GND,	See Figure 16	25°C	5 V		2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	5 V	·	200		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, f = 1 MHz,	Switch OFF, see Figure 19	25°C	5 V		-64		dB
THD	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, see Figure 21	25°C	5 V		0.005%		
Supply		•		•		•		•	
1	Positive supply	V = V or CND	Switch ON or OFF	25°C	5.5 V		0.01	0.1	^
I ₊	current	$V_I = V_+ \text{ or GND},$	SWILCTI ON OF OFF	Full	5.5 V	·		0.5	μΑ

6.6 Electrical Characteristics for 3.3-V Supply

 V_{+} = 3 V to 3.6 V, T_{A} = -40°C to 85°C (unless otherwise noted)⁽¹⁾

PA	RAMETER	TEST (CONDITIONS	T _A	V ₊	MIN	TYP	MAX	UNIT
Analog Swit	ch								
V _{COM} , V _{NO}	Analog signal range					0		V ₊	V
r _{peak}	Peak ON resistance	$0 \le V_{NO} \le V_+,$ $I_{COM} = -100 \text{ mA},$	Switch ON, see Figure 13	25°C Full	3 V		1.1	1.5 1.7	Ω
r	ON-state	V _{NO} = 2 V,	Switch ON,	25°C	3 V		1	1.4	Ω
r _{on}	resistance	$I_{COM} = -100 \text{ mA},$	see Figure 13	Full	3 V			1.5	32
r	ON-state resistance	$0 \le V_{NO} \le V_{+},$ $I_{COM} = -100 \text{ mA},$	Switch ON,	25°C	3 V		0.3		Ω
r _{on(flat)}	flatness	$V_{NO} = 2 \text{ V}, 0.8 \text{ V},$ $I_{COM} = -100 \text{ mA},$	see Figure 13	25°C Full	"		0.09	0.15	32
		V _{NO} = 1 V, V _{COM} = 3 V,		25°C		-2	0.5	2	
I _{NO(OFF)}	NO OFF leakage current	$v_{COM} = 3 \text{ V},$ or $v_{NO} = 3 \text{ V},$ $v_{COM} = 1 \text{ V},$	Switch OFF, see Figure 14	Full	3.6 V	-20		20	nA
I _{NO(PWROFF)}		$V_{NO} = 0 \text{ to } 3.6 \text{ V},$ $V_{COM} = 3.6 \text{ V to } 0,$		25°C	0 V	-1	0.1	1 5	μА
		V _{COM} = 1 V,		Full 25°C		-5 -2	0.5	2	
I _{COM(OFF)}	COM OFF leakage current	$V_{NO} = 3 V$, or $V_{COM} = 3 V$, $V_{NO} = 1 V$,	Switch OFF, see Figure 14	Full	3.6 V	-20		20	nA
I _{COM(PWROFF)}	Current	V _{COM} = 3.6 V to 0, V _{NO} = 0 to 3.6 V,		25°C Full	0 V	-1 -5	0.1	1 5	μΑ
		V _{NO} = 1 V,		25°C			0.2	2	
I _{NO(ON)}	NO ON leakage current	$V_{NO} = 1 \text{ V},$ $V_{COM} = \text{Open},$ or $V_{NO} = 3 \text{ V},$ $V_{COM} = \text{Open},$	Switch ON, see Figure 15	Full	3.6 V	-20	0.2	20	nA
	2011	V _{COM} = 1 V,		25°C		-2	0.2	2	
I _{COM(ON)}	COM ON leakage current	V_{NO} = Open, or V_{COM} = 3 V, V_{NO} = Open,	Switch ON, see Figure 15	Full	3.6 V	-20		20	nA
Digital Cont	rol Inputs (IN)								
V _{IH}	Input logic high			Full		2		5.5	V
V _{IL}	Input logic low			Full		0		0.8	V
I _{IH} , I _{IL}	Input leakage current	V _I = 5.5 V or 0		25°C Full	3.6 V	-2 -20	0.3	2 20	nA
Dynamic				I					
	T	$V_{COM} = V_+,$	C _L = 35 pF,	25°C	3.3 V	2	5	10	
t _{ON}	Turnon time	$R_L = 50 \Omega$	see Figure 17	Full	3 V to 3.6 V	1.5		11	ns
	Turn off time	$V_{COM} = V_+,$	$C_{L} = 35 \text{ pF},$	25°C	3.3 V	6.5	9	12	
t _{OFF}	Turnoff time	$R_L = 50 \Omega$,	see Figure 17	Full	3 V to 3.6 V	4		13	ns
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	$C_L = 1 \text{ nF},$ see Figure 21	25°C	3.3 V		1		pC
C _{NO(OFF)}	NO OFF capacitance	$V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 16	25°C	3.3 V		19		pF
C _{COM(OFF)}	COM OFF capacitance	V _{COM} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	3.3 V		18		pF
C _{NO(ON)}	NO ON capacitance	V _{NO} = V ₊ or GND, Switch ON,	See Figure 16	25°C	3.3 V		36		pF
	COM	$V_{COM} = V_{+}$ or GND,	See Figure 16	25°C	3.3 V		36		pF

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Electrical Characteristics for 3.3-V Supply (continued)

 $V_{+} = 3 \text{ V}$ to 3.6 V, $T_{A} = -40 ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$ (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST	CONDITIONS	T _A	V ₊	MIN TYP	MAX	UNIT
Cı	Digital input capacitance	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	3.3 V	2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	3.3 V	200		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, see Figure 19	25°C	3.3 V	-64		dB
THD	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, see Figure 21	25°C	3.3 V	0.01%		
Supply	,			•				
	Positive supply	$V_1 = V_+$ or GND,	Switch ON or OFF	25°C	3.6 V	0.01	0.1	^
1+	current	V ₁ = V ₊ OI GIND,	SWILCH ON OF OFF	Full	3.0 V	<u>, </u>	0.25	μА

6.7 Electrical Characteristics for 2.5-V Supply

 $V_{+} = 2.3 \text{ V}$ to 2.7 V, $T_{A} = -40 ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$ (unless otherwise noted) $^{(1)}$

P	ARAMETER	TEST CO	ONDITIONS	T _A	V ₊	MIN	TYP	MAX	UNIT
Analog Sw	itch								
V _{COM} , V _{NO}	Analog signal range				2.3 V	0		V ₊	V
r .	Peak ON resistance	$0 \le V_{NO} \le V_+$	Switch ON,	25°C	2.3 V		1.8	2.4	Ω
rpeak	reak ON Tesistance	$I_{COM} = -100 \text{ mA},$	see Figure 13	Full	2.5 V			2.6	22
r _{on}	ON-state resistance	V _{NO} = 2 V,	Switch ON,	25°C	2.3 V		1.2	2.1	Ω
on	OTT GIGITO TOGGICATION	$I_{COM} = -100 \text{ mA},$	see Figure 13	Full	2.0 1			2.4	
	ON-state resistance	$0 \le V_{NO} \le V_{+},$ $I_{COM} = -100 \text{ mA},$	Switch ON,	25°C	0.01/		0.7		
on(flat)	flatness	$V_{NO} = 2 V, 0.8 V,$	see Figure 13	25°C	2.3 V		0.4	0.6	Ω
	T	$I_{COM} = -100 \text{ mA},$		Full				0.6	
		$V_{NO} = 1 V$		25°C		- 5	0.3	5	
NO(OFF)	NO OFF leakage current	$V_{COM} = 3 \text{ V},$ or $V_{NO} = 3 \text{ V},$ $V_{COM} = 1 \text{ V},$	Switch OFF, see Figure 14	Full	2.7 V	-50		50	nA
NO(PWROFF		$V_{NO} = 0 \text{ to } 3.6 \text{ V},$		25°C		-2	0.05	2	μА
)		$V_{COM} = 3.6 \text{ V to 0},$,	Full	0 V	-15		15	
	V _{COM} = 1 V,			25°C		- 5	0.3	5	
COM(OFF)	COM OFF leakage current	$V_{NO} = 3 V$, or $V_{COM} = 3 V$, $V_{NO} = 1 V$,	Switch OFF, see Figure 14	Full	2.7 V	-50		50	nA
I _{COM(PWRO}		$V_{COM} = 3.6 \text{ V to } 0,$		25°C	0 V	-2	0.05	2	
FF)		$V_{NO} = 0 \text{ to } 3.6 \text{ V},$		Full	UV	-15		15	μА
		$V_{NO} = 1 V$		25°C		-2	0.3	2	
NO(ON)	NO ON leakage current	V_{COM} = Open, or V_{NO} = 3 V, V_{COM} = Open,	Switch ON, see Figure 15	Full	2.7 V	-20		20	nA
		V _{COM} = 1 V,		25°C		-2	0.3	2	nA
COM(ON)	COM ON leakage current	V_{NO} = Open, or V_{COM} = 3 V, V_{NO} = Open,	Switch ON, see Figure 15	Full	2.7 V	-20		20	
Digital Con	trol Inputs (IN1, IN2)								
V _{IH}	Input logic high			Full		1.8		5.5	V
V _{IL}	Input logic low			Full		0		0.6	V

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Electrical Characteristics for 2.5-V Supply (continued)

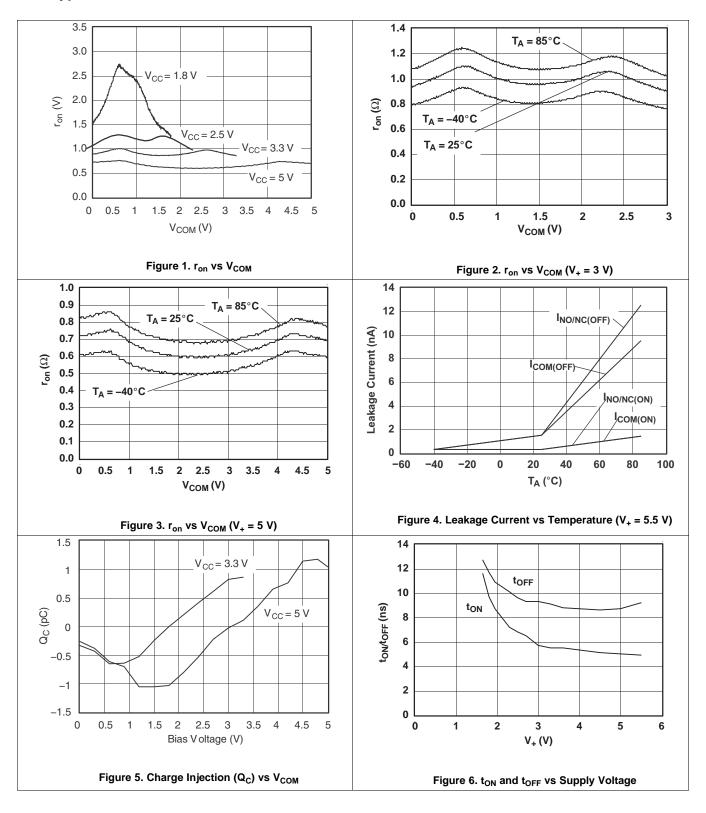
 $V_{+} = 2.3 \text{ V to } 2.7 \text{ V}, T_{A} = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C} \text{ (unless otherwise noted)}^{(1)}$

F	PARAMETER	TEST CO	ONDITIONS	T _A	V ₊	MIN	TYP	MAX	UNIT
	Input leakage	V 55V 0		25°C	0.7.1/	-2	0.3	2	- 1
I _{IH} , I _{IL}	current	$V_1 = 5.5 \text{ V or } 0$		Full	2.7 V	-20		20	nA
Dynamic		·							
		V - V	C _L = 35 pF,	25°C	2.5 V	2	6	10	
t _{ON}	Turnon time	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	see Figure 17	Full	2.3 V to 2.7 V	1		12	ns
		V V	C 25 5 5	25°C	2.5 V	4.5	8	10.5	
t _{OFF}	Turnoff time	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	C _L = 35 pF, see Figure 17	Full	2.3 V to 2.7 V	3		15	ns
$Q_{\mathbb{C}}$	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, see Figure 21	25°C	2.5 V		4		рС
C _{NO(OFF)}	NO OFF capacitance	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	2.5 V		19.5		pF
C _{COM(OFF)}	COM OFF capacitance	V _{COM} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	2.5 V		18.5		pF
C _{NO(ON)}	NO ON capacitance	V _{NO} = V ₊ or GND, Switch ON,	See Figure 16	25°C	2.5 V		36.5		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	2.5 V		36.5		pF
Cı	Digital input capacitance	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	2.5 V		2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	2.5 V		150		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, see Figure 19	25°C	2.5 V		-62		dB
THD	Total harmonic distortion	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, see Figure 21	25°C	2.5 V		0.02%		
Supply				•				'	
	Positive supply	V – V or CND	Switch ON or OFF	25°C	2.7 V		0.001	0.02	
I ₊	current	$V_I = V_+ \text{ or GND},$	Switch ON or OFF	Full	2.7 V			0.25	μΑ

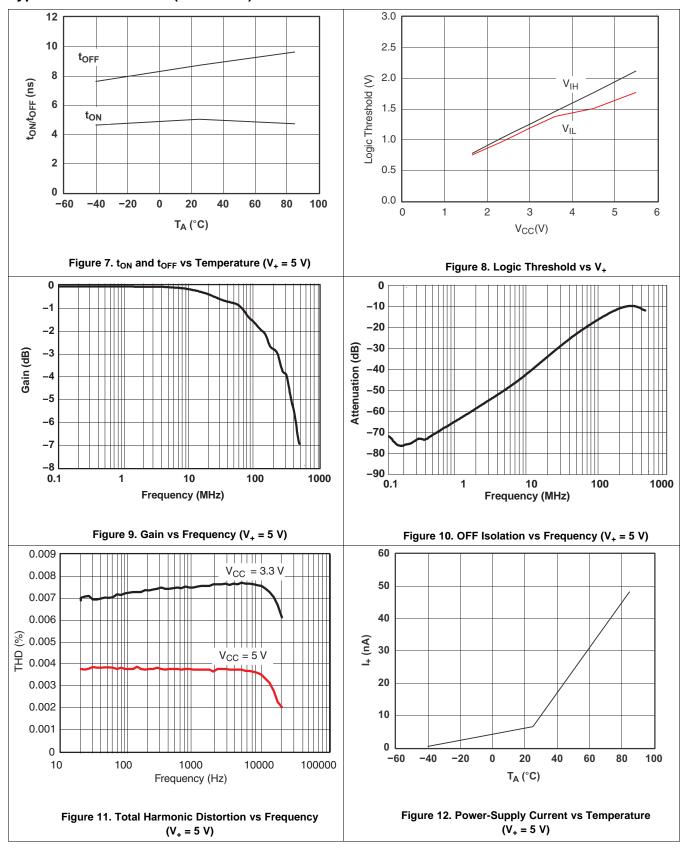
6.8 Electrical Characteristics for 1.8-V Supply⁽¹⁾

 V_{+} = 1.65 V to 1.95 V, T_{A} = -40°C to 85°C (unless otherwise noted))

PA	RAMETER	TEST CONDITIONS T _A			V ₊	MIN	TYP	MAX	UNIT
Analog Swit	ch								
V _{COM} , V _{NO}	Analog signal range					0		V ₊	V
r _{peak}	Peak ON resistance	$0 \le V_{NO} \le V_{+},$ $I_{COM} = -100 \text{ mA},$	Switch ON, see Figure 13	25°C Full	1.65 V		4.2	25 30	Ω
r _{on}	ON-state resistance	$V_{NO} = 2 V$, $I_{COM} = -100 \text{ mA}$,	Switch ON, see Figure 13	25°C Full	1.65 V		1.6	3.9 4.0	Ω
	ON-state	$0 \le V_{NO} \le V_{+},$ $I_{COM} = -100 \text{ mA},$	Switch ON,	25°C			2.8		
r _{on(flat)}	resistance flatness	$V_{NO} = 2 \text{ V}, 0.8 \text{ V},$ $I_{COM} = -100 \text{ mA},$	see Figure 13	25°C Full	1.65 V		4.1	22 27	Ω
		V _{NO} = 1 V,		25°C		- 5		5	
I _{NO(OFF)}	NO OFF leakage current	$V_{COM} = 3 \text{ V},$ or $V_{NO} = 3 \text{ V},$ $V_{COM} = 1 \text{ V},$	Switch OFF, see Figure 14	Full	1.95 V	-50		50	nA
I _{NO(PWROFF)}		$V_{NO} = 0 \text{ to } 3.6 \text{ V},$		25°C	0 V	-2		2	μА
'NO(PWROFF)		$V_{COM} = 3.6 \text{ V to 0},$		Full		-10		10	μ,
		$V_{COM} = 1 \text{ V},$ $V_{NO} = 3 \text{ V},$		25°C	_	– 5		5	
I _{COM(OFF)}	COM OFF leakage current	or V _{COM} = 3 V, V _{NO} = 1 V,	Switch OFF, see Figure 14	Full	1.95 V	-50		50	nA
I _{COM(PWROFF}	Current	$V_{COM} = 0 \text{ to } 3.6 \text{ V},$		25°C	0.1/	-2		2	^
)		$V_{NO} = 3.6 \text{ V to } 0,$		Full	0 V	-10		10	μΑ
	NO	$V_{NO} = 1 V$		25°C		-2		2	
I _{NO(ON)}	NO ON leakage current	$V_{COM} = Open,$ or $V_{NO} = 3 V,$ $V_{COM} = Open,$	Switch ON, see Figure 15	Full	1.95 V	-20		20	nA
		V _{COM} = 1 V,		25°C		-2		2	
I _{COM(ON)}	COM ON leakage current	$V_{NO} = Open,$ or $V_{COM} = 3 V,$ $V_{NO} = Open,$	Switch ON, see Figure 15	Full	1.95 V	-20		20	nA
Digital Cont	rol Inputs (IN1, IN2)								
V _{IH}	Input logic high			Full		1.5		5.5	V
V _{IL}	Input logic low			Full		0		0.6	V
I _{IH} , I _{IL}	Input leakage	V _I = 5.5 V or 0		25°C	1.95 V	-2	0.3	2	nA
	current			Full		-20		20	
Dynamic				0500	4.0.\/	2		40	
t _{ON}	Turnon time	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	$C_L = 35 pF$, see Figure 17	25°C Full	1.8 V 1.65 V to	3 1	9	18 20	ns
				25°C	1.95 V 1.8 V	5	10	15.5	
t _{OFF}	Turnoff time	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	$C_L = 35 \text{ pF},$ see Figure 17	Full	1.65 V to 1.95 V	4	10	18.5	ns
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, see Figure 21	25°C	1.8 V		2		pC
C _{NO(OFF)}	NO OFF capacitance	V _{NO} = V ₊ or GND, Switch OFF,	See Figure 16	25°C	1.8 V		19.5		pF
C _{COM(OFF)}	COM OFF capacitance	$V_{COM} = V_{+}$ or GND, Switch OFF,	See Figure 16	25°C	1.8 V		18.5		pF


⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

Electrical Characteristics for 1.8-V Supply⁽¹⁾ (continued)


 V_{+} = 1.65 V to 1.95 V, T_{A} = -40°C to 85°C (unless otherwise noted))

P/	RAMETER	TEST CO	NDITIONS	T _A	V ₊	MIN TYP	MAX	UNIT
C _{NO(ON)}	NO ON capacitance	$V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 16	25°C	1.8 V	36.5		pF
C _{COM(ON)}	COM ON capacitance	V _{COM} = V ₊ or GND, Switch ON,	See Figure 16	25°C	1.8 V	36.5		pF
C _I	Digital input capacitance	$V_I = V_+ \text{ or GND},$	See Figure 16	25°C	1.8 V	2		pF
BW	Bandwidth	$R_L = 50 \Omega$, Switch ON,	See Figure 18	25°C	1.8 V	150		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega$, f = 1 MHz,	Switch OFF, see Figure 19	25°C	1.8 V	-62		dB
THD	Total harmonic distortion	$R_{L} = 600 \Omega,$ $C_{L} = 50 pF,$	f = 20 Hz to 20 kHz see Figure 21	25°C	1.8 V	0.055 %		
Supply								
1	Positive supply	V – V or CND	Switch ON or	25°C	1.95 V	0.001	0.01	^
1+	current	$V_I = V_+ \text{ or GND},$	OFF	Full	1.95 V		0.15	μΑ

6.9 Typical Characteristics

Typical Characteristics (continued)

7 Parameter Measurement Information

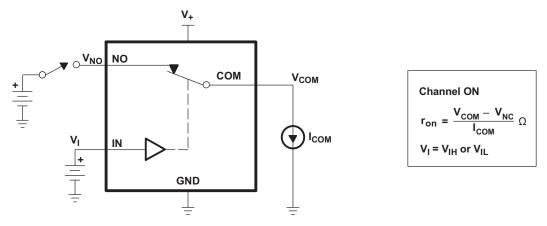


Figure 13. ON-State Resistance (r_{on})

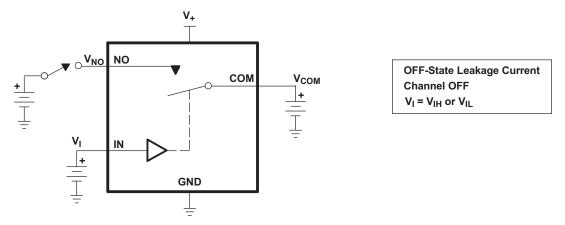


Figure 14. OFF-State Leakage Current ($I_{COM(OFF)}$, $I_{NO(OFF)}$, $I_{COM(PWROFF)}$, $I_{NO(PWR(FF))}$)

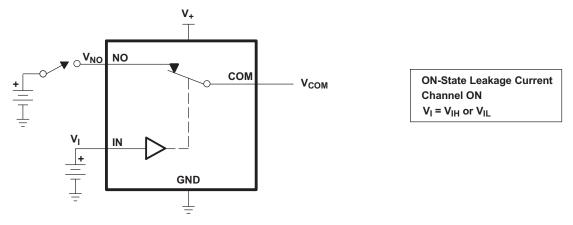


Figure 15. ON-State Leakage Current ($I_{COM(ON)}$, $I_{NO(ON)}$)

Parameter Measurement Information (continued)

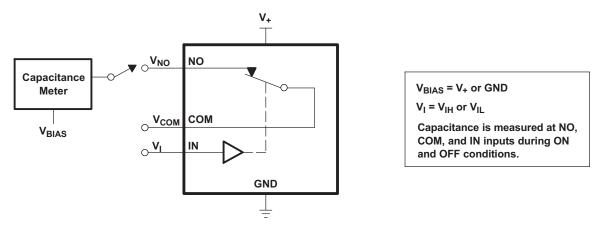
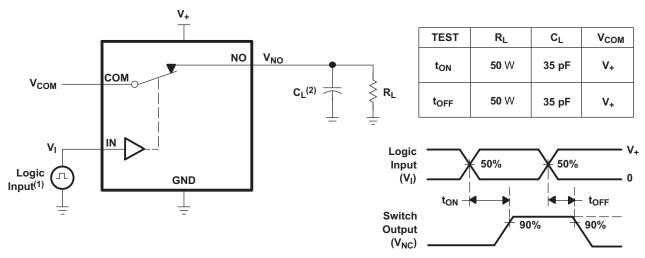



Figure 16. Capacitance (C_I, $C_{COM(OFF)}$, $C_{COM(ON)}$, $C_{NO(OFF)}$, $C_{NO(ON)}$)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f < 5 \text{ ns}$, $t_f < 5 \text{ ns}$.
- (2) C_L includes probe and jig capacitance.

Figure 17. Turnon (t_{ON}) and Turnoff Time (t_{OFF})

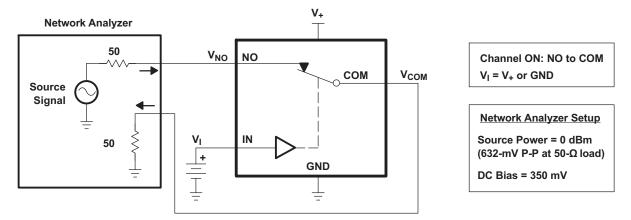


Figure 18. Bandwidth (BW)

Parameter Measurement Information (continued)

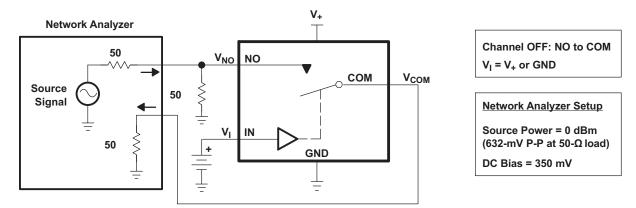
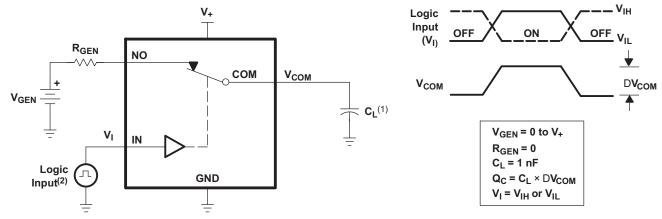
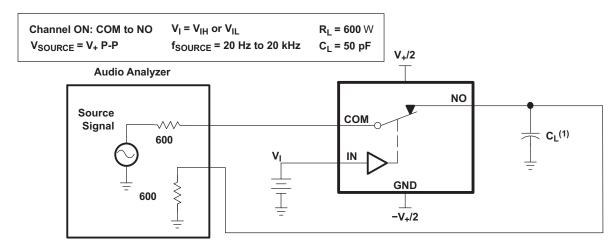
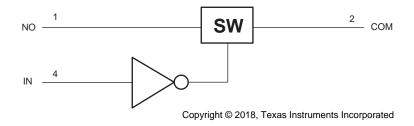




Figure 19. OFF Isolation (O_{ISO})

- (1) C_L includes probe and jig capacitance.
- (2) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f < 5 \text{ ns}$, $t_f < 5 \text{ ns}$.

Figure 20. Charge Injection (Q_C)

(1) C_L includes probe and jig capacitance.


Figure 21. Total Harmonic Distortion (THD)

8 Detailed Description

8.1 Overview

The TS5A3166 is a single-pole single-throw (SPST) analog switch that is designed to operate from 1.65 V to 5.5 V. The device offers a low ON-state resistance. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

8.2 Functional Block Diagram

8.3 Feature Description

The low ON-state resistance, ON-state resistance matching, and charge injection in the TS5A3166 make this switch an excellent choice for analog signals that require minimal distortion. In addition, the low THD allows audio signals to be preserved more clearly as they pass through the device.

The 1.65-V to 5.5-V operation allows compatibility with more logic levels, and the bidirectional I/Os can pass analog signals from 0 V to V_{+} with low distortion.

8.4 Device Functional Modes

Table 1. Function Table

IN	NO TO COM, COM TO NO
L	OFF
Н	ON

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

SPST analog switch is a basic component that could be used in any electrical system design. Figure 22 and Figure 23 are some basic applications that utilize the TS5A3166.

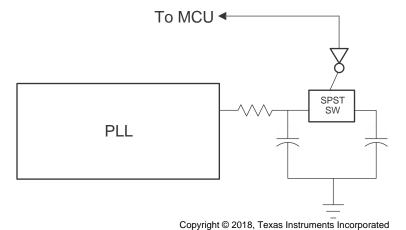


Figure 22. Improved Lock Time Circuit Simplified Block Diagram

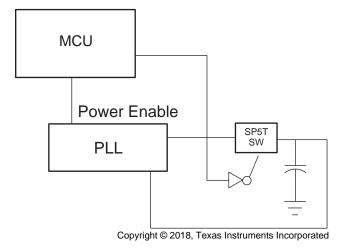


Figure 23. PLL Improved Power Consumption Simplified Block Diagram

9.2 Typical Application

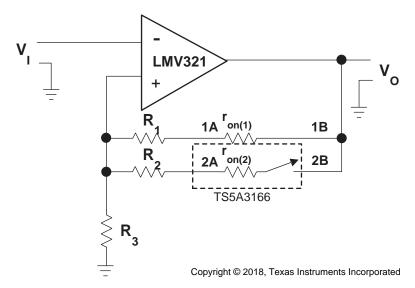
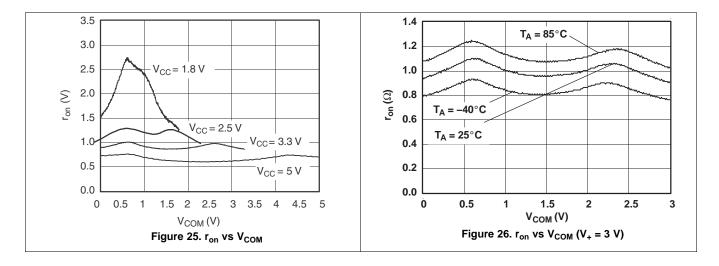


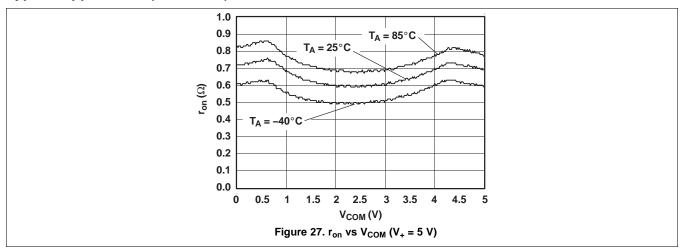
Figure 24. Gain-Control Circuit for Operational Amplifier

9.2.1 Design Requirements

By choosing values of R1 and R2, such that $Rx >> r_{on(x)}$, r_{on} of TS5A3166 can be ignored. The gain of operational amplifier can be calculated as follow:


$$Vo / VI = 1 + R|| / R3$$
 (1)

$$R|| = (R1 + r_{on(1)}) || (R2 + r_{on(2)})$$
(2)


9.2.2 Detailed Design Procedure

Place a switch in series with the input of the operational amplifier. Since the operational amplifier input impedance is very large, a switch on $r_{on(1)}$ is irrelevant.

9.2.3 Application Curves

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μF bypass capacitor is recommended. If there are multiple pins labeled V_{CC} , then a 0.01- μF or 0.022- μF capacitor is recommended for each V_{CC} because the V_{CC} pins will be tied together internally. For devices with dual supply pins operating at different voltages, for example V_{CC} and V_{DD} , a 0.1- μF bypass capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1- μF and 1- μF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

11 Layout

11.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change of width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This upsets the transmission line characteristics, especially the distributed capacitance and self–inductance of the trace — resulting in the reflection. It is a given that not all PCB traces can be straight, and so they will have to turn corners. Figure 28 shows progressively better techniques of rounding corners. Only the last example maintains constant trace width and minimizes reflections.

11.2 Layout Example

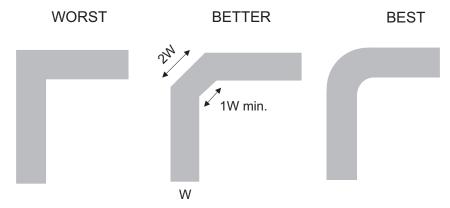


Figure 28. Trace Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Device Nomenclature

Table 2. Parameter Description

SYMBOL	DESCRIPTION
V _{COM}	Voltage at COM
V _{NO}	Voltage at NO
r _{on}	Resistance between COM and NO ports when the channel is ON
r _{peak}	Peak ON-state resistance over a specified voltage range
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worst-case input and output conditions
I _{NO(PWROFF)}	Leakage current measured at the NO port during the power-down condition, $V_{+} = 0$
I _{COM(OFF)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the OFF state under worst-case input and output conditions
I _{COM(PWROFF)}	Leakage current measured at the COM port during the power-down condition, $V_{+} = 0$
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the ON state and the output (NO) open
V _{IH}	Minimum input voltage for logic high for the control input (IN)
V _{IL}	Maximum input voltage for logic low for the control input (IN)
VI	Voltage at the control input (IN)
$I_{\rm IH},I_{\rm IL}$	Leakage current measured at the control input (IN)
t _{ON}	Turnon time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON.
t _{OFF}	Turnoff time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF.
Q_C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance, and ΔV_{COM} is the change in analog output voltage.
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
C _{COM(OFF)}	Capacitance at the COM port when the corresponding channel (COM to NO) is OFF
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NO) is ON
C _I	Capacitance of control input (IN)
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NO to COM) in the OFF state.
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.
THD	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.
I ₊	Static power-supply current with the control (IN) pin at V ₊ or GND

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
(1)	(2)			(3)				(6)
Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	` '	Level-1-260C-UNLIM	-40 to 85	(JASF, JASR)
Active	Production	· /1		Yes		Level-1-260C-UNLIM		(JASF, JASR)
Active	Production	· /1	· ·	Yes	NIPDAU I NIPDAU	Level-1-260C-UNLIM		(JF5, JFF, JFR)
		` , ,	· ·					(JF5, JFF, JFR)
		()1	· ·					JFN
		(/ / /	· · · · · · · · · · · · · · · · · · ·					JFN
	(1)	Active Production Active Production Active Production Active Production Active Production Active Production	Active Production SOT-23 (DBV) 5 Active Production SOT-23 (DBV) 5 Active Production SC70 (DCK) 5 Active Production SC70 (DCK) 5 Active Production DSBGA (YZP) 5	Active Production SOT-23 (DBV) 5 3000 LARGE T&R Active Production SOT-23 (DBV) 5 3000 LARGE T&R Active Production SC70 (DCK) 5 3000 LARGE T&R Active Production SC70 (DCK) 5 3000 LARGE T&R Active Production DSBGA (YZP) 5 3000 LARGE T&R	(1) (2) (3) Active Production SOT-23 (DBV) 5 3000 LARGE T&R Yes Active Production SOT-23 (DBV) 5 3000 LARGE T&R Yes Active Production SC70 (DCK) 5 3000 LARGE T&R Yes Active Production SC70 (DCK) 5 3000 LARGE T&R Yes Active Production DSBGA (YZP) 5 3000 LARGE T&R Yes	(1) (2) (3) Ball material (4) Active Production SOT-23 (DBV) 5 3000 LARGE T&R Yes NIPDAU SN Active Production SOT-23 (DBV) 5 3000 LARGE T&R Yes NIPDAU Active Production SC70 (DCK) 5 3000 LARGE T&R Yes NIPDAU NIPDAU Active Production SC70 (DCK) 5 3000 LARGE T&R Yes NIPDAU Active Production DSBGA (YZP) 5 3000 LARGE T&R Yes SNAGCU	(1) (2) (3) Ball material (4) (5) Active Production SOT-23 (DBV) 5 3000 LARGE T&R Yes NIPDAU SN Level-1-260C-UNLIM Active Production SOT-23 (DBV) 5 3000 LARGE T&R Yes NIPDAU Level-1-260C-UNLIM Active Production SC70 (DCK) 5 3000 LARGE T&R Yes NIPDAU NIPDAU Level-1-260C-UNLIM Active Production SC70 (DCK) 5 3000 LARGE T&R Yes NIPDAU Level-1-260C-UNLIM Active Production DSBGA (YZP) 5 3000 LARGE T&R Yes SNAGCU Level-1-260C-UNLIM	(1) (2) (3) Ball material (4) (5) Peak reflow (5) Active Production SOT-23 (DBV) 5 3000 LARGE T&R Yes NIPDAU SN Level-1-260C-UNLIM -40 to 85 Active Production SOT-23 (DBV) 5 3000 LARGE T&R Yes NIPDAU Level-1-260C-UNLIM -40 to 85 Active Production SC70 (DCK) 5 3000 LARGE T&R Yes NIPDAU NIPDAU Level-1-260C-UNLIM -40 to 85 Active Production SC70 (DCK) 5 3000 LARGE T&R Yes NIPDAU Level-1-260C-UNLIM -40 to 85 Active Production DSBGA (YZP) 5 3000 LARGE T&R Yes SNAGCU Level-1-260C-UNLIM -40 to 85

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

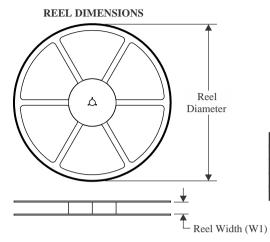
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

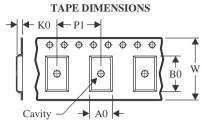
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

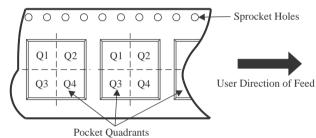
23-May-2025


OTHER QUALIFIED VERSIONS OF TS5A3166:


Automotive: TS5A3166-Q1

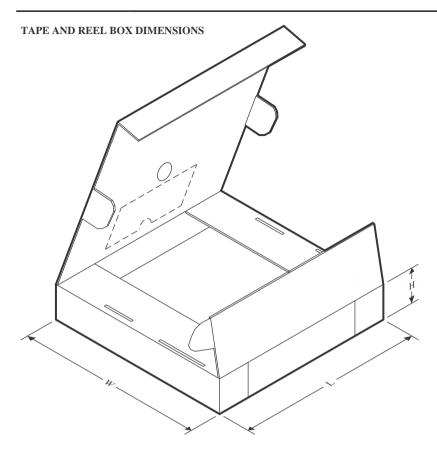
NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

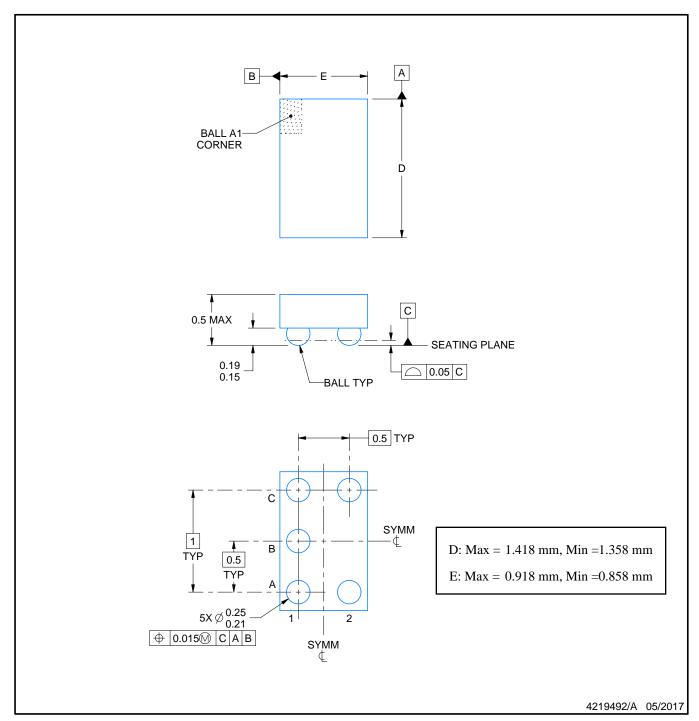


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A3166DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TS5A3166DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
TS5A3166YZPR	DSBGA	YZP	5	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

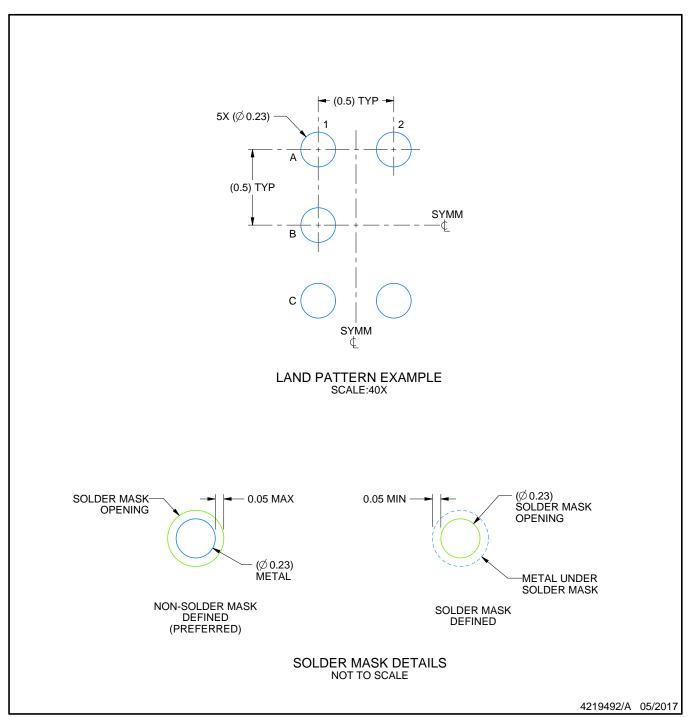
30-May-2025



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A3166DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TS5A3166DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
TS5A3166YZPR	DSBGA	YZP	5	3000	220.0	220.0	35.0

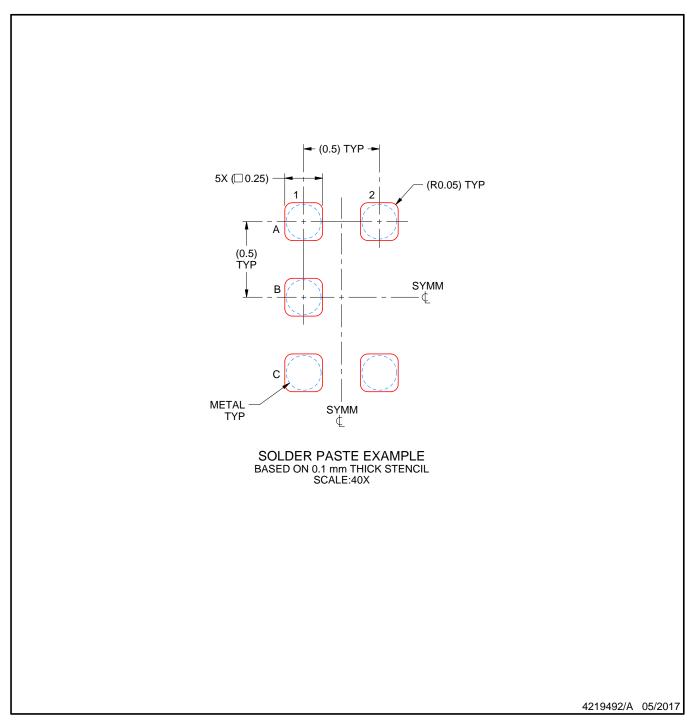
DIE SIZE BALL GRID ARRAY



NOTES:

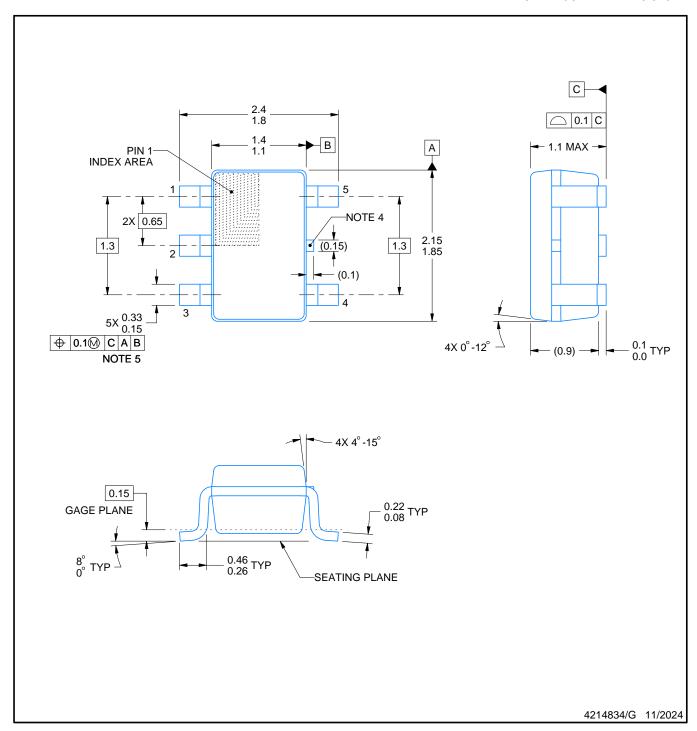
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.


DIE SIZE BALL GRID ARRAY

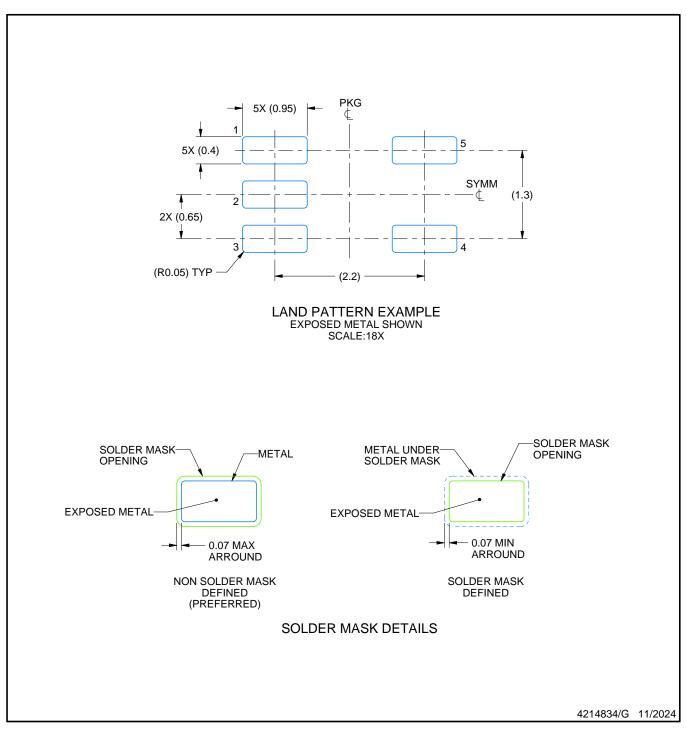
NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

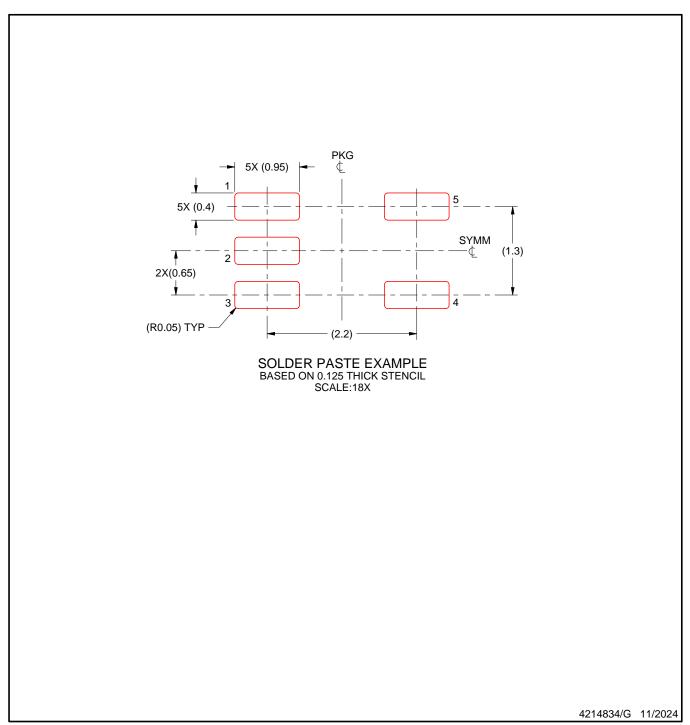

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.



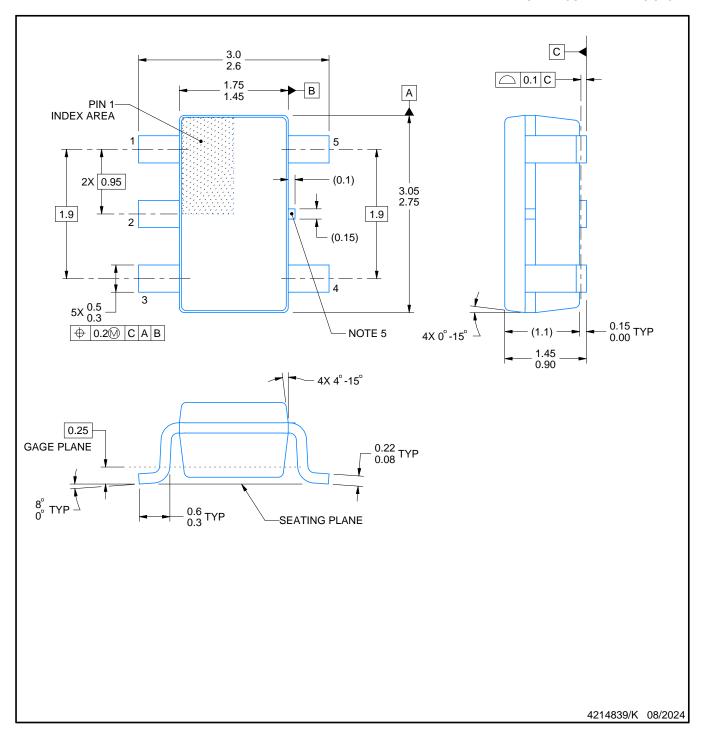
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-203.

- 4. Support pin may differ or may not be present.
- 5. Lead width does not comply with JEDEC.
- 6. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side

NOTES: (continued)

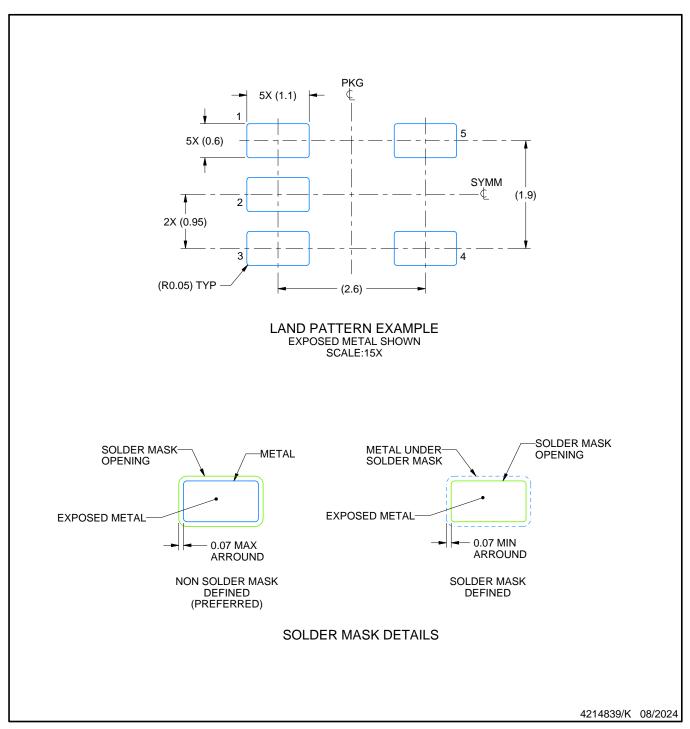
7. Publication IPC-7351 may have alternate designs.8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



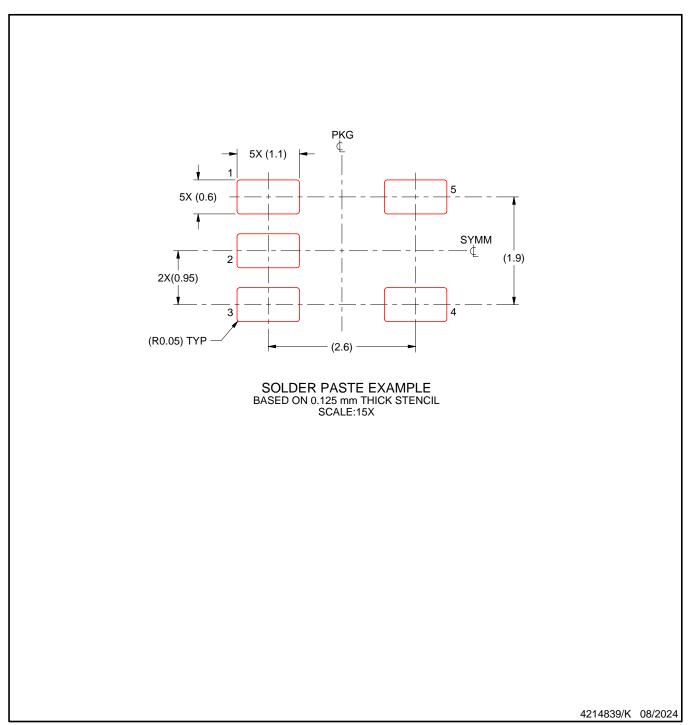
NOTES: (continued)

^{9.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{10.} Board assembly site may have different recommendations for stencil design.



NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{9.} Board assembly site may have different recommendations for stencil design.