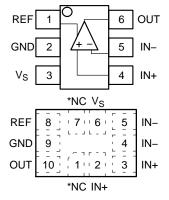
Current-Shunt Monitor, Voltage Output, Bi-Directional Zero-Drift

The NCS210, NCV210, and NCS211 are voltage output current shunt monitors that can measure voltage across shunts at common–mode voltages from -0.3 V to 26 V, independent of supply voltage. Two fixed gains are available: 200 V/V, or 500 V/V. The low offset of the zero–drift architecture enables current sensing with maximum drops across the shunt as low as 10 mV full–scale.

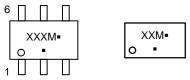
The devices can operate from a single +2.7 V to +26 V power supply, drawing a maximum of $100 \mu A$ of supply current. All versions are specified over the extended operating temperature range (-40° C to $+125^{\circ}$ C). Available in SC-70 and thin UQFN space-saving packages.

Features

- Wide Common–Mode Input Range –0.3 V to 26 V
- Supply Voltage Range from 2.7 V to 26 V
- Low Offset Voltage ±60 μV Max
- Low Offset Drift (0.1 μV/°C)
- Low Gain Error (Max 1%)
- Rail-to-Rail Input and Output Capability
- Low Current Consumption (typ 65 μA, 100 μA max)
- NCV Prefix for Automotive and Other Applications Requiring Unique Site Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


Typical Applications

- Current Sensing (High-Side/Low-Side)
- Automotive
- Telecom
- Sensors



PIN CONNECTIONS

*NC denotes no internal connection. These pins can be left floating or connected to any voltage between Vs and GND.

MARKING DIAGRAMS

XXX = Specific Device Code (See page 4)

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

Product	Gain	R3-R4	R1-R2
NCS210	200	5 kΩ	1 ΜΩ
NCV210	200	5 kΩ	1 ΜΩ
NCS211	500	2 kΩ	1 ΜΩ

$$V_{OUT} = (I_{LOAD} \times R_{SHUNT})GAIN + V_{REF}$$

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 4 of this data sheet.

This document contains information on some products that are still under development. ON Semiconductor reserves the right to change or discontinue these products without notice.

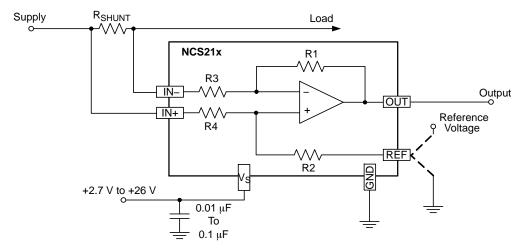


Figure 1. Application Schematic

Table 1. MAXIMUM RATINGS

Rating			Symbol	Value	Unit	
Supply Voltage (Note 1)		NCS21x NCV21x	V _S	+26 +28	V	
Analog Inputs	Differential (V _{IN+})-(V _{IN-})		$V_{\text{IN+}}, V_{\text{IN-}}$	-26 to +26	V	
	Common–Mode (Note 2)	NCS21x NCV21x		GND-0.3 to +26 GND-0.3 to +28		
REF Input			V_{REF}	GND-0.3 to (V _s) +0.3	V	
Output (Note 2)			V _{OUT}	GND-0.3 to (V _s) +0.3	V	
Input Current into Any Pin (Note 2)				5	mA	
Maximum Junction Temperature			T _{J(max)}	+150	°C	
Storage Temperature Range			TSTG	-65 to +150	°C	
ESD Capability, Human Body Model (Note 3)			HBM	±3000	V	
ESD Capability, Machine Model (Note 3)			MM	±100	V	
Charged Device Model (Note 3)			CDM	±1000	V	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for safe

- operating parameters.
- Input voltage at any pin may exceed the voltage shown if current at that pin is limited to 5 mA.
- 3. This device series incorporates ESD protection and is tested by the following methods
 - ESD Human Body Model tested per AEC-Q100-002 (EIA/JÉSD22-A114)
 - ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)
 - ESD Charged Device Model tested per AEC-Q100-011.
 - Latchup Current Maximum Rating: 50 mA per JEDEC standard: JESD78

Table 2. THERMAL CHARACTERISTICS

Rating		Symbol	Value	Unit
Thermal Characteristics (Note 4) Thermal Resistance, Junction-to-Air (Note 5)	SC-70 UQFN10	$R_{ heta JA}$	250 300	°C/W

- Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for safe operating parameters.
- 5. Values based on copper area of 645 mm² (or 1 in²) of 1 oz copper thickness and FR4 PCB substrate.

Table 3. RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Supply Voltage	V_S	2.7	26	V
Ambient Temperature	T_A	-40	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

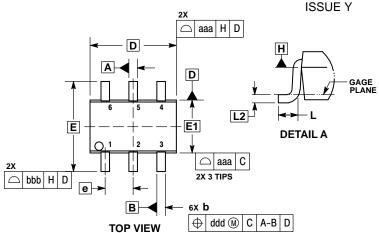
Table 4. ELECTRICAL CHARACTERISTICS Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}\text{C}$ to 125°C, guaranteed by characterization and/or design. At $T_A = +25^{\circ}\text{C}$, $V_{SENSE} = V_{IN+} - V_{IN-}$. NCS210, NCV210: $V_S = +5$ V, $V_{IN+} = 12$ V, and $V_{REF} = V_S/2$, unless otherwise noted. NCS211: $V_S = +12$ V, $V_{IN+} = 12$ V, and $V_{REF} = V_S/2$, unless otherwise noted.

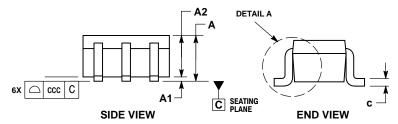
Parameter		Test Conditions Symbol		Min	Тур	Max	Unit
GAIN							
NCS210, NCV210 NCS211			G		200 500		V/V
Gain Error NCS210, NCS211		$V_{SENSE} = -5 \text{ mV to } 5 \text{ mV}$ G_e			±0.2	±1	%
	NCV210	$V_{SENSE} = -5 \text{ mV to } 5 \text{ mV}$	G _e		±0.2	±1.5	%
Gain Error vs. Temp.	NCS210, NCS211	$T_A = -10^{\circ}C \text{ to } 125^{\circ}C$			7	14	ppm/°C
	NCV210	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$			7	70	ppm/°C
Nonlinearity Error		$V_{SENSE} = -5 \text{ mV to } 5 \text{ mV}$			±0.01		%
Maximum Capacitive	Load	No sustained oscillation			1		nF
VOLTAGE OFFSET							
Offset Voltage (RTI Note 6)	NCS210, NCS211	V _{SENSE} = 0 mV	V _{OS}		±0.55	±60	μV
	NCV210				±0.55	±90	μV
Offset Drift	NCS210, NCS211		δV/δΤ		0.1	0.6	μV/°C
	NCV210		δV/δΤ		0.1	1.0	μV/°C
INPUT							
Input Bias Current		V _{SENSE} = 0 mV	I _{IB}			60	μΑ
Common-Mode Input	Voltage Range		V_{CM}	-0.3		26	V
Common–Mode Rejection Ratio	NCS210, NCS211	$V_S = 5 \text{ V}, V_{IN+} = 2 \text{ V to +26 V}, V_{SENSE} = 0 \text{ mV}$	CMRR	103	115		dB
		V _S = 3.3 V, V _{IN+} = 3 V to +26 V, V _{SENSE} = 0 mV		103	115		dB
		$V_S = 3.3 \text{ V}, V_{\text{IN+}} = 0 \text{ V to } +26 \text{ V},$ $V_{\text{SENSE}} = 0 \text{ mV } (T_A = -10^{\circ}\text{C to } 85^{\circ}\text{C})$		103	120		dB
Common–Mode Rejection Ratio	NCV210	V _S = 5 V, V _{IN+} = 2 V to +26 V, V _{SENSE} = 0 mV	CMRR	100	115		dB
		V _S = 3.3 V, V _{IN+} = 3 V to +26 V, V _{SENSE} = 0 mV		100	115		dB
OUTPUT							
Output Voltage Low		Referenced from GND $R_L = 10 \text{ k}\Omega$ to Ground	V _{OL}		5	50	mV
Output Voltage High		Referenced from V_S $R_L = 10 \text{ k}\Omega$ to Ground	V _{OH}		0.05	0.2	V
DYNAMIC PERFORM	IANCE						
Bandwidth (f _{-3dB})		C _{LOAD} = 10 pF, NCS210, NCV210 C _{LOAD} = 10 pF, NCS211	BW		40 25		kHz
Slew Rate			SR		0.4		V/μs
NOISE							
Spectral Density, 1 kHz (RTI Note 6)			e _n		35		nV/√Hz
POWER SUPPLY							
Operating Voltage Range		V _{SENSE} = 0 mV	Vs	2.7		26	V
Quiescent Current		V _{SENSE} = 0 mV	I _{DD}		65	100	μΑ
Quiescent Current over Temperature		V _{SENSE} = 0 mV				115	μА
Power Supply Rejection Ratio		$V_S = +2.7 \text{ V to } +26 \text{ V, } V_{IN+} = 18 \text{ V,} $ $V_{SENSE} = 0 \text{ mV}$	PSRR		±0.1	±10	μV/V

^{6.} RTI = referenced-to-input.

ORDERING INFORMATION

Device	Gain	Marking	Package	Shipping [†]
NCS210SQT2G	200	AAP		
NCS211SQT2G	500	AAM	SC70-6 (Pb-Free)	3000 / Tape and Reel
NCV210SQT2G *	200	VAP	(. 2)	
NCS210MUTAG (In Development)**	200	TBD	UQFN10 (Pb-Free)	3000 / Tape and Reel

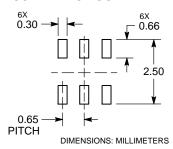

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D


^{*}NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.
** Contact local sales office for availability.

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363

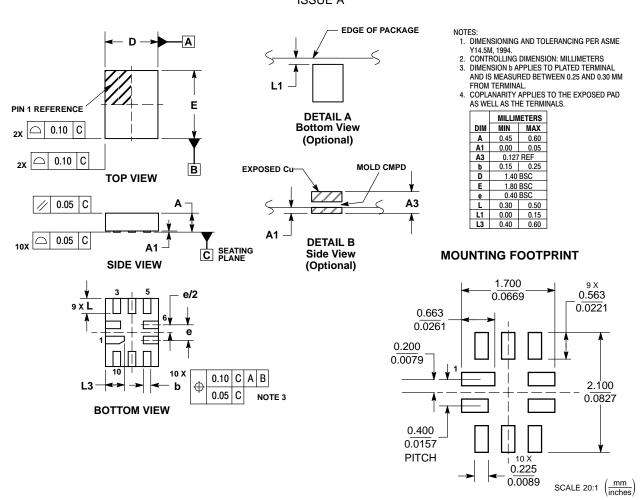
CASE 419B-02



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.
 DATUMS A AND B ARE DETERMINED AT DATUM H.
 DIMENSIONS D AND C APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
 DIMENSIONS NO DESCRIPTION OF THE CONTROL OF THE CONTRO

- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α			1.10			0.043	
A1	0.00		0.10	0.000		0.004	
A2	0.70	0.90	1.00	0.027	0.035	0.039	
b	0.15	0.20	0.25	0.006	0.008	0.010	
С	0.08	0.15	0.22	0.003	0.006	0.009	
D	1.80	2.00	2.20	0.070	0.078	0.086	
E	2.00	2.10	2.20	0.078	0.082	0.086	
E1	1.15	1.25	1.35	0.045	0.049	0.053	
е		0.65 BS	С	0.026 BSC			
L	0.26	0.36	0.46	0.010	0.014	0.018	
L2		0.15 BSC			0.006 BSC		
aaa	0.15			0.006			
bbb	0.30			0.012			
CCC	0.10			0.004			
ddd		0.10			0.004		


RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

UQFN10 1.4x1.8, 0.4P CASE 488AT ISSUE A

